skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Object Classification From Randomized EEG Trials}
New results suggest strong limits to the feasibility of object classification from human brain activity evoked by image stimuli, as measured through EEG. Considerable prior work suffers from a confound between the stimulus class and the time since the start of the experiment. A prior attempt to avoid this confound using randomized trials was unable to achieve results above chance in a statistically significant fashion when the data sets were of the same size as the original experiments. Here, we attempt object classification from EEG using an array of methods that are representative of the state-of-the-art, with a far larger (20x) dataset of randomized EEG trials, 1,000 stimulus presentations of each of forty classes, all from a single subject. To our knowledge, this is the largest such EEG data-collection effort from a single subject and is at the bounds of feasibility. We obtain classification accuracy that is marginally above chance and above chance in a statistically significant fashion, and further assess how accuracy depends on the classifier used, the amount of training data used, and the number of classes. Reaching the limits of data collection with only marginally above-chance performance suggests that the prevailing literature substantially exaggerates the feasibility of object classification from EEG.  more » « less
Award ID(s):
1734938 1522954
PAR ID:
10284066
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
Page Range / eLocation ID:
3845-3854
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Lee, Kyoung Mu (Ed.)
    A recent paper claims that a newly proposed method classifies EEG data recorded from subjects viewing ImageNet stimuli better than two prior methods. However, the analysis used to support that claim is based on confounded data. We repeat the analysis on a large new dataset that is free from that confound. Training and testing on aggregated supertrials derived by summing trials demonstrates that the two prior methods achieve statistically significant above-chance accuracy while the newly proposed method does not. 
    more » « less
  2. null (Ed.)
    A recent paper [1] claims to classify brain processing evoked in subjects watching ImageNet stimuli as measured with EEG and to employ a representation derived from this processing to construct a novel object classifier. That paper, together with a series of subsequent papers [2] , [3] , [4] , [5] , [6] , [7] , [8] , claims to achieve successful results on a wide variety of computer-vision tasks, including object classification, transfer learning, and generation of images depicting human perception and thought using brain-derived representations measured through EEG. Our novel experiments and analyses demonstrate that their results crucially depend on the block design that they employ, where all stimuli of a given class are presented together, and fail with a rapid-event design, where stimuli of different classes are randomly intermixed. The block design leads to classification of arbitrary brain states based on block-level temporal correlations that are known to exist in all EEG data, rather than stimulus-related activity. Because every trial in their test sets comes from the same block as many trials in the corresponding training sets, their block design thus leads to classifying arbitrary temporal artifacts of the data instead of stimulus-related activity. This invalidates all subsequent analyses performed on this data in multiple published papers and calls into question all of the reported results. We further show that a novel object classifier constructed with a random codebook performs as well as or better than a novel object classifier constructed with the representation extracted from EEG data, suggesting that the performance of their classifier constructed with a representation extracted from EEG data does not benefit from the brain-derived representation. Together, our results illustrate the far-reaching implications of the temporal autocorrelations that exist in all neuroimaging data for classification experiments. Further, our results calibrate the underlying difficulty of the tasks involved and caution against overly optimistic, but incorrect, claims to the contrary. 
    more » « less
  3. Objectively differentiating patient mental states based on electrical activity, as opposed to overt behavior, is a fundamental neuroscience problem with medical applications, such as identifying patients in locked-in state vs. coma. Electroencephalography (EEG), which detects millisecond-level changes in brain activity across a range of frequencies, allows for assessment of external stimulus processing by the brain in a non-invasive manner. We applied machine learning methods to 26-channel EEG data of 24 fluent Deaf signers watching videos of sign language sentences (comprehension condition), and the same videos reversed in time (non-comprehension condition), to objectively separate vision-based high-level cognition states. While spectrotemporal parameters of the stimuli were identical in comprehension vs. non-comprehension conditions, the neural responses of participants varied based on their ability to linguistically decode visual data. We aimed to determine which subset of parameters (specific scalp regions or frequency ranges) would be necessary and sufficient for high classification accuracy of comprehension state. Optical flow, characterizing distribution of velocities of objects in an image, was calculated for each pixel of stimulus videos using MATLAB Vision toolbox. Coherence between optical flow in the stimulus and EEG neural response (per video, per participant) was then computed using canonical component analysis with NoiseTools toolbox. Peak correlations were extracted for each frequency for each electrode, participant, and video. A set of standard ML algorithms were applied to the entire dataset (26 channels, frequencies from .2 Hz to 12.4 Hz, binned in 1 Hz increments), with consistent out-of-sample 100% accuracy for frequencies in .2-1 Hz range for all regions, and above 80% accuracy for frequencies < 4 Hz. Sparse Optimal Scoring (SOS) was then applied to the EEG data to reduce the dimensionality of the features and improve model interpretability. SOS with elastic-net penalty resulted in out-of-sample classification accuracy of 98.89%. The sparsity pattern in the model indicated that frequencies between 0.2–4 Hz were primarily used in the classification, suggesting that underlying data may be group sparse. Further, SOS with group lasso penalty was applied to regional subsets of electrodes (anterior, posterior, left, right). All trials achieved greater than 97% out-of-sample classification accuracy. The sparsity patterns from the trials using 1 Hz bins over individual regions consistently indicated frequencies between 0.2–1 Hz were primarily used in the classification, with anterior and left regions performing the best with 98.89% and 99.17% classification accuracy, respectively. While the sparsity pattern may not be the unique optimal model for a given trial, the high classification accuracy indicates that these models have accurately identified common neural responses to visual linguistic stimuli. Cortical tracking of spectro-temporal change in the visual signal of sign language appears to rely on lower frequencies proportional to the N400/P600 time-domain evoked response potentials, indicating that visual language comprehension is grounded in predictive processing mechanisms. 
    more » « less
  4. null (Ed.)
    Hyperdimensional (HD) computing holds promise for classifying two groups of data. This paper explores seizure detection from electroencephalogram (EEG) from subjects with epilepsy using HD computing based on power spectral density (PSD) features. Publicly available intra-cranial EEG (iEEG) data collected from 4 dogs and 8 human patients in the Kaggle seizure detection contest are used in this paper. This paper explores two methods for classification. First, few ranked PSD features from small number of channels from a prior classification are used in the context of HD classification. Second, all PSD features extracted from all channels are used as features for HD classification. It is shown that for about half the subjects small number features outperform all features in the context of HD classification, and for the other half, all features outperform small number of features. HD classification achieves above 95% accuracy for six of the 12 subjects, and between 85-95% accuracy for 4 subjects. For two subjects, the classification accuracy using HD computing is not as good as classical approaches such as support vector machine classifiers. 
    more » « less
  5. Abstract Objective. Neurological disorders affecting speech production adversely impact quality of life for over 7 million individuals in the US. Traditional speech interfaces like eye-tracking devices and P300 spellers are slow and unnatural for these patients. An alternative solution, speech brain-computer interfaces (BCIs), directly decodes speech characteristics, offering a more natural communication mechanism. This research explores the feasibility of decoding speech features using non-invasive EEG.Approach. Nine neurologically intact participants were equipped with a 63-channel EEG system with additional sensors to eliminate eye artifacts. Participants read aloud sentences selected for phonetic similarity to the English language. Deep learning models, including Convolutional Neural Networks and Recurrent Neural Networks with and without attention modules, were optimized with a focus on minimizing trainable parameters and utilizing small input window sizes for real-time application. These models were employed for discrete and continuous speech decoding tasks.Main results. Statistically significant participant-independent decoding performance was achieved for discrete classes and continuous characteristics of the produced audio signal. A frequency sub-band analysis highlighted the significance of certain frequency bands (delta, theta, gamma) for decoding performance, and a perturbation analysis was used to identify crucial channels. Assessed channel selection methods did not significantly improve performance, suggesting a distributed representation of speech information encoded in the EEG signals. Leave-One-Out training demonstrated the feasibility of utilizing common speech neural correlates, reducing data collection requirements from individual participants.Significance. These findings contribute significantly to the development of EEG-enabled speech synthesis by demonstrating the feasibility of decoding both discrete and continuous speech features from EEG signals, even in the presence of EMG artifacts. By addressing the challenges of EMG interference and optimizing deep learning models for speech decoding, this study lays a strong foundation for EEG-based speech BCIs. 
    more » « less