skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Still an Ineffective Method With Supertrials/ERPs—Comments on “Decoding Brain Representations by Multimodal Learning of Neural Activity and Visual Features”
A recent paper claims that a newly proposed method classifies EEG data recorded from subjects viewing ImageNet stimuli better than two prior methods. However, the analysis used to support that claim is based on confounded data. We repeat the analysis on a large new dataset that is free from that confound. Training and testing on aggregated supertrials derived by summing trials demonstrates that the two prior methods achieve statistically significant above-chance accuracy while the newly proposed method does not.  more » « less
Award ID(s):
1734938
PAR ID:
10487157
Author(s) / Creator(s):
; ;
Editor(s):
Lee, Kyoung Mu
Publisher / Repository:
IEEE
Date Published:
Journal Name:
IEEE Transactions on Pattern Analysis and Machine Intelligence
Volume:
45
Issue:
11
ISSN:
0162-8828
Page Range / eLocation ID:
14052 to 14054
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Understanding who blames or supports whom in news text is a critical research question in computational social science. Traditional methods and datasets for sentiment analysis are, however, not suitable for the domain of political text as they do not consider the direction of sentiments expressed between entities. In this paper, we propose a novel NLP task of identifying directed sentiment relationship between political entities from a given news document, which we call directed sentiment extraction. From a million-scale news corpus, we construct a dataset of news sentences where sentiment relations of political entities are manually annotated. We present a simple but effective approach for utilizing a pretrained transformer, which infers the target class by predicting multiple question-answering tasks and combining the outcomes. We demonstrate the utility of our proposed method for social science research questions by analyzing positive and negative opinions between political entities in two major events: 2016 U.S. presidential election and COVID-19. The newly proposed problem, data, and method will facilitate future studies on interdisciplinary NLP methods and applications. 
    more » « less
  2. We consider Bayesian high‐dimensional mediation analysis to identify among a large set of correlated potential mediators the active ones that mediate the effect from an exposure variable to an outcome of interest. Correlations among mediators are commonly observed in modern data analysis; examples include the activated voxels within connected regions in brain image data, regulatory signals driven by gene networks in genome data, and correlated exposure data from the same source. When correlations are present among active mediators, mediation analysis that fails to account for such correlation can be suboptimal and may lead to a loss of power in identifying active mediators. Building upon a recent high‐dimensional mediation analysis framework, we propose two Bayesian hierarchical models, one with a Gaussian mixture prior that enables correlated mediator selection and the other with a Potts mixture prior that accounts for the correlation among active mediators in mediation analysis. We develop efficient sampling algorithms for both methods. Various simulations demonstrate that our methods enable effective identification of correlated active mediators, which could be missed by using existing methods that assume prior independence among active mediators. The proposed methods are applied to the LIFECODES birth cohort and the Multi‐Ethnic Study of Atherosclerosis (MESA) and identified new active mediators with important biological implications. 
    more » « less
  3. P300-based Brain-Computer Interface (BCI) performance is vulnerable to latency jitter. To investigate the role of latency jitter on BCI system performance, we proposed the classifier-based latency estimation (CBLE) method. In our previous study, CBLE was based on least-squares (LS) and stepwise linear discriminant analysis (SWLDA) classifiers. Here, we aim to extend the CBLE method using sparse autoencoders (SAE) to compare the SAE-based CBLE method with LS- and SWLDA-based CBLE. The newly-developed SAE-based CBLE and previously used methods are also applied to a newly-collected dataset to reduce the possibility of spurious correlations. Our results showed a significant (p<0.001) negative correlation between BCI accuracy and estimated latency jitter. Furthermore, we also examined the effect of the number of electrodes on each classification technique. Our results showed that on the whole, CBLE worked regardless of the classification method and electrode count; by contrast the effect of the number of electrodes on BCI performance was classifier dependent. 
    more » « less
  4. Abstract Causal mediation analysis aims to characterize an exposure's effect on an outcome and quantify the indirect effect that acts through a given mediator or a group of mediators of interest. With the increasing availability of measurements on a large number of potential mediators, like the epigenome or the microbiome, new statistical methods are needed to simultaneously accommodate high-dimensional mediators while directly target penalization of the natural indirect effect (NIE) for active mediator identification. Here, we develop two novel prior models for identification of active mediators in high-dimensional mediation analysis through penalizing NIEs in a Bayesian paradigm. Both methods specify a joint prior distribution on the exposure-mediator effect and mediator-outcome effect with either (a) a four-component Gaussian mixture prior or (b) a product threshold Gaussian prior. By jointly modelling the two parameters that contribute to the NIE, the proposed methods enable penalization on their product in a targeted way. Resultant inference can take into account the four-component composite structure underlying the NIE. We show through simulations that the proposed methods improve both selection and estimation accuracy compared to other competing methods. We applied our methods for an in-depth analysis of two ongoing epidemiologic studies: the Multi-Ethnic Study of Atherosclerosis (MESA) and the LIFECODES birth cohort. The identified active mediators in both studies reveal important biological pathways for understanding disease mechanisms. 
    more » « less
  5. null (Ed.)
    Structural health monitoring of complex structures is often limited by restricted accessibility to locations of interest within the structure and availability of operational loads. In this work, a novel output-only virtual sensing scheme is proposed. This scheme involves the implementation of the modal expansion in an augmented Kalman filter. Performance of the proposed scheme is compared with two existing methods. Method 1 relies on a finite element model updating, batch data processing, and modal expansion (MUME) procedure. Method 2 employs a recursive sequential estimation algorithm, which feeds a substructure model of the instrumented system into an Augmented Kalman Filter (AKF). The new scheme referred to as Method 3 (ME-AKF), implements strain estimates generated via Modal Expansion into an AKF as virtual measurements. To demonstrate the applicability of the aforementioned methods, a rollercoaster connection was instrumented with accelerometers, strain rosettes, and an optical sensor. A comparison of estimated dynamic strain response at unmeasured locations using three alternative schemes is presented. Although acceleration measurements are used indirectly for model updating, the response-only methods presented in this research use only measurements from strain rosettes for strain history predictions and require no prior knowledge of input forces. Predicted strains using all methods are shown to sufficiently predict the measured strain time histories from a control location and lie within a 95% confidence interval calculated based on modal expansion equations. In addition, the proposed ME-AKF method shows improvement in strain predictions at unmeasured locations without the necessity of batch data processing. The proposed scheme shows high potential for real-time dynamic estimation of the strain and stress state of complex structures at unmeasured locations. 
    more » « less