skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Global Patterns of Spatial and Temporal Variability in Salinity from Multiple Gridded Argo Products
Abstract Salinity is one of the fundamental ocean state variables and has been used to infer important information about climate change and variability. Previous studies have found inconsistent salinity variations in various objective ocean analyses that are based on the Argo measurements. However, as far as we are aware, a comprehensive assessment of those inconsistencies, as well as robust spatial and temporal features of salinity variability among the Argo-based products, has not been conducted. Here we compare and evaluate ocean salinity variability from five objective ocean analyses that are solely or primarily based on Argo measurements for their overlapping period from 2005 to 2015. We examine the salinity variability at the sea surface and within two depth intervals (0–700 and 700–2000 m). Our results show that the climatological mean is generally consistent among all examined products, although regional discrepancies are evident in the subsurface ocean. The time evolution, vertical structure, and leading EOF modes of salinity variations show good agreement among most of the examined products, indicating that a number of robust features of the salinity variability can be obtained by examining gridded Argo products. However, significant discrepancies in these variations exist, particularly in the subsurface North Atlantic and Southern Oceans. Also, despite the increasing number of Argo floats deployed in the ocean, the discrepancies were not significantly reduced over time. Our analyses, particularly those of the discrepancies between products, can serve as a useful reference for utilizing and improving the existing objective ocean analyses that are based on Argo measurements.  more » « less
Award ID(s):
2021274
PAR ID:
10284080
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Journal of Climate
Volume:
33
Issue:
20
ISSN:
0894-8755
Page Range / eLocation ID:
8751 to 8766
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract Ocean heat content (OHC) is key to estimating the energy imbalance of the earth system. Over the past two decades, an increasing number of OHC studies were conducted using oceanic objective analysis (OA) products. Here we perform an intercomparison of OHC from eight OA products with a focus on their robust features and significant differences over the Argo period (2005-2019), when the most reliable global scale oceanic measurements are available. For the global ocean, robust warming in the upper 2000 m is confirmed. The 0-300 m layer shows the highest warming rate but is heavily modulated by interannual variability, particularly the El Niño–Southern Oscillation. The 300-700 m and 700-2000 m layers, on the other hand, show unabated warming. Regionally, the Southern Ocean and mid-latitude North Atlantic show a substantial OHC increase, and the subpolar North Atlantic displays an OHC decrease. A few apparent differences in OHC among the examined OA products were identified. In particular, temporal means of a few OA products that incorporated other ocean measurements besides Argo show a global-scale cooling difference, which is likely related to the baseline climatology fields used to generate those products. Large differences also appear in the interannual variability in the Southern Ocean and in the long-term trends in the subpolar North Atlantic. These differences remind us of the possibility of product-dependent conclusions on OHC variations. Caution is therefore warranted when using merely one OA product to conduct OHC studies, particularly in regions and on timescales that display significant differences. 
    more » « less
  2. Abstract Global estimates of absolute velocities can be derived from Argo float trajectories during drift at parking depth. A new velocity dataset developed and maintained at Scripps Institution of Oceanography is presented based on all Core, Biogeochemical, and Deep Argo float trajectories collected between 2001 and 2020. Discrepancies between velocity estimates from the Scripps dataset and other existing products including YoMaHa and ANDRO are associated with quality control criteria, as well as selected parking depth and cycle time. In the Scripps product, over 1.3 million velocity estimates are used to reconstruct a time-mean velocity field for the 800–1200 dbar layer at 1° horizontal resolution. This dataset provides a benchmark to evaluate the veracity of the BRAN2020 reanalysis in representing the observed variability of absolute velocities and offers a compelling opportunity for improved characterization and representation in forecast and reanalysis systems. Significance Statement The aim of this study is to provide observation-based estimates of the large-scale, subsurface ocean circulation. We exploit the drift of autonomous profiling floats to carefully isolate the inferred circulation at the parking depth, and combine observations from over 11 000 floats, sampling between 2001 and 2020, to deliver a new dataset with unprecedented accuracy. The new estimates of subsurface currents are suitable for assessing global models, reanalyses, and forecasts, and for constraining ocean circulation in data-assimilating models. 
    more » « less
  3. Abstract. The ocean carbon store plays a vital role in setting the carbon response to emissions and variability in the carbon cycle. However, due to the ocean's strong regional and temporal variability, sparse carbon observations limit our understanding of historical carbon changes.Ocean temperature and salinity profiles are more widespread and rapidly expanding due to autonomous programmes, and so we explore how temperature and salinity profiles can provide information to reconstruct ocean carbon inventories with ensemble optimal interpolation. Here, ensemble optimal interpolation is used to reconstruct ocean carbon using synthetic Argo temperature and salinity observations, with examples for both the top 100 m and top 2000 m carbon inventories.When considering reconstructions of the top 100 m carbon inventory, coherent relationships between upper-ocean carbon, temperature, salinity, and atmospheric CO2 result in optimal solutions that reflect the controls of undersaturation, solubility, and alkalinity.Out-of-sample reconstructions of the top 100 m show that, in most regions, the trend in ocean carbon and over 60 % of detrended variability can be reconstructed using local temperature and salinity measurements, with only small changes when considering synthetic profiles consistent with irregular Argo sampling.Extending the method to reconstruct the upper 2000 m reveals that model uncertainties at depth limit the reconstruction skill.The impact of these uncertainties on reconstructing the carbon inventory over the upper 2000 m is small, and full reconstructions with historical Argo locations show that the method can reconstruct regional inter-annual and decadal variability.Hence, optimal interpolation based on model relationships combined with hydrographic measurements can provide valuable information about global ocean carbon inventory changes. 
    more » « less
  4. Abstract. Use of an ocean parameter and state estimation framework – such as the Estimating the Circulation and Climate of the Ocean (ECCO) framework – could provide an opportunity to learn about the spatial distribution of the diapycnal diffusivity parameter (κρ) that observations alone cannot due to gaps in coverage. However, we show that the inclusion of misfits to observed physical variables – such as in situ temperature, salinity, and pressure – currently accounted for in ECCO is not sufficient, as κρ from ECCO does not agree closely with any observationally derived product. These observationally derived κρ products were inferred from microstructure measurements, derived from Argo and conductivity–temperature–depth (CTD) data using a strain-based parameterization of fine-scale hydrographic structure, or calculated from climatological and seafloor data using a parameterization of tidal mixing. The κρ products are in close agreement with one another but have both measurement and structural uncertainties, whereas tracers can have relatively small measurement uncertainties. With the ultimate goal being to jointly improve the ECCO state estimate and representation of κρ in ECCO, we investigate whether adjustments in κρ due to inclusion of misfits to a tracer – dissolved oxygen concentrations from an annual climatology – would be similar to those due to inclusion of misfits to observationally derived κρ products. We do this by performing sensitivity analyses with ECCO. We compare multiple adjoint sensitivity calculations: one configuration uses misfits to observationally derived κρ, and the other uses misfits to observed dissolved oxygen concentrations. We show that adjoint sensitivities of dissolved oxygen concentration misfits to the state estimate's control space typically direct κρ to improve relative to the observationally derived values. These results suggest that the inclusion of oxygen in ECCO's misfits will improve κρ in ECCO, particularly in (sub)tropical regions. 
    more » « less
  5. Abstract Hundreds of full-depth temperature and salinity profiles collected by Deepglider autonomous underwater vehicles (AUVs) in the North Atlantic reveal robust signals in eddy isopycnal vertical displacement and horizontal current throughout the entire water column. In separate glider missions southeast of Bermuda, subsurface-intensified cold, fresh coherent vortices were observed with velocities exceeding 20 cm s −1 at depths greater than 1000 m. With vertical resolution on the order of 20 m or less, these full-depth glider slant profiles newly permit estimation of scaled vertical wavenumber spectra from the barotropic through the 40th baroclinic mode. Geostrophic turbulence theory predictions of spectral slopes associated with the forward enstrophy cascade and proportional to inverse wavenumber cubed generally agree with glider-derived quasi-universal spectra of potential and kinetic energy found at a variety of locations distinguished by a wide range of mean surface eddy kinetic energy. Water-column average spectral estimates merge at high vertical mode number to established descriptions of internal wave spectra. Among glider mission sites, geographic and seasonal variability implicate bottom drag as a mechanism for dissipation, but also the need for more persistent sampling of the deep ocean. Significance Statement Relative to upper-ocean measurements of temperature, salinity, and velocity, deep ocean measurements (below 2000 m) are fewer in number and more difficult to collect. Deep measurements are needed, however, to explore the nature of deep ocean circulation contributing to the global redistribution of heat and to determine how upper-ocean behavior impacts or drives deep motions. Understanding of geographic and temporal variability in vertical structures of currents and eddies enables improved description of energy pathways in the ocean driven by turbulent interactions. In this study, we use newly developed autonomous underwater vehicles, capable of diving to the seafloor and back on a near daily basis, to collect high-resolution full ocean depth measurements at various locations in the North Atlantic. These measurements reveal connections between surface and deep motions, and importantly show their time evolution. Results of analyzing these vertical structures reveal the deep ocean to regularly “feel” events in the upper ocean and permit new comparisons to deep motions in climate models. 
    more » « less