skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Comparative study of the extraction methods for the instrumental analysis of bee propolis. Undergraduate Journal of Teaching and Research
As a natural resinous substance collected by honeybees from buds and exudates of trees, propolis is used by bees as a glue, general-purpose sealer, and draught extruder for beehives. In this paper, different extraction methods were employed to compare their efficiency in the extraction of bee propolis samples. The methods employed using ethanol as a solvent were the following: soaking method, ultrasonication method, and microwave method. Gas chromatography-mass spectrometry (GC-MS) and spectroscopic methods such as absorbance and fluorescence were utilized to determine the amount of phenolic compounds extracted and compare each extraction's efficiency method. Results showed samples obtained from ultrasonication and microwave methods gave the highest yields. Both methods can be performed within a short time in comparison to the soaking method.  more » « less
Award ID(s):
1828320
PAR ID:
10284126
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Louisiana State University of Alexandria undergraduate journal of teaching research
Volume:
1
ISSN:
2691-6495
Page Range / eLocation ID:
51-62
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Propolis is a natural resinous substance collected by honeybees from buds and exu-dates of trees. The material has attracted much attention in recent years as a functional food component since it possesses various biological properties, including antimicro-bial, antioxidative, and anti-ulcer properties. In this study, the performance of accel-erated solvent extraction (ASE) was assessed and compared with varying methods of extraction: soaking (maceration), ultrasonication, and microwave-assisted methods. Gas chromatography-mass spectrometry (GC-MS) and other spectroscopic tech-niques, such as absorbance and fluorescence, were employed to assess the efficiency in the extraction of natural products. The antioxidant activity and phenolic content of the different extracts were also determined. Results showed samples obtained from the microwave method showed the highest yield in the extraction of bioactive com-pounds. Although microwave showed the best method in this study, some issues and recommendations on ASE application for extracting natural products from bee prop-olis were discussed. Given the ease in controlling extraction temperature with ASE, this technique has a great potential to be a better method for extraction of heat-labile natural products from propolis should optimization of conditions for extraction were further performed. 
    more » « less
  2. Honey bee propolis is a complex, resinous mixture created by bees using plant sources such as leaves, flowers, and bud exudates. This study characterized how cropland surrounding apiaries affects the chemical composition and antimicrobial effects of propolis. The chemical composition and compound abundance of the propolis samples were analyzed using Gas Chromatography-Mass Spectrometry (GC-MS) and the antimicrobial effects were analyzed using the 50% minimum inhibitory concentration (MIC50) assay against four relevant bee pathogens, Serratia marcescens, Paenibacillus larvae, Lysinibacillus sphaericus, and Klebsiella pneumoniae. Propolis composition varied significantly with apiary, and cropland coverage predicted mean sum abundance of compounds. The apiary with the highest cropland coverage exhibited significantly higher MIC50 values for S. marcescens and K. pneumoniae compared to other apiaries. These results demonstrate that agricultural land use surrounding honey bee apiaries decreases the chemical quality and antimicrobial effects of propolis, which may have implications for the impacts of land use on hive immunity to potential pathogens. 
    more » « less
  3. no editor (Ed.)
    Many different techniques are used to extract microplastics (MPs) from sediment samples of variable composition and grain size. The lack of uniform methodology makes it challenging to compare results across studies and to select methods appropriate to local sedimentary conditions. This study (a) evaluates the separation efficiency, yield, and contamination (blank) of settling compared centrifugation density separation, and (b) examines the distribution of MP across successive separation phases (interstitial water, organic matter, sediment). Two different density-separation dependent extraction methods were tested with tropical marine sediments from the US Virgin Islands with variable grain size and composition: (1) suspension within a settling column, and (2): centrifugation. The samples were processed under a laminar flow hood using published best practices to minimize contamination. The two separation techniques produced similar MP yields (85-100%), which were calculated by tracing polyethylene microspheres. However, processing in the settling column sometimes produced incomplete settling of fine organic matter and took a significantly longer time (week vs. minutes) than did separation via centrifugation. Analytical blanks (contamination) were also slightly greater using a settling column (avg: 5.3±1.1) vs the centrifuge (avg: 3.6±0.9). However, the most important reason why the centrifugation is preferable is that it allows for the complete removal of separatory solutions via compaction of the sediment. This allows phased separation of MPs through sequential interstitial water removal, hydrogen peroxide treatment and removal (to target organic matter bound MP), and density separation phases. Our experiments showed that a significant portion of the total MP in the samples were potentially located in the interstitial water phase (16±12%) and the following hydrogen peroxide phase (25±20%). In the literature, intermediate treatment solutions are often discarded, resulting in an underestimation of total MP in the sediments. In summary, we found that the most effective method of MP extraction from organic rich or fine-grained sediments is a phased centrifugation process which includes counting MP from all phases. 
    more » « less
  4. Abstract The light-soaking effect is the observation that under constant illumination the measured power conversion efficiency of certain solar cells changes as a function of time. The theory of the light-soaking in metal halide perovskites is at present incomplete. In this report, we employ steady-state microwave conductivity, a contactless probe of electronic properties of semiconductors, to study the light-soaking effect in metal halide perovskites. By illuminating isolated thin films of two mixed-cation perovskites with AM1.5 solar illumination, we observe a continual increase in photoconductance over a period of many (>12) hours. We can fit the experimentally observed changes in photoconductance to a stretched exponential function, in an analogous manner to bias-stressed thin-film transistors. The information provided in this report should help the community better understand one of the most perplexing open problems in the field of perovskite solar cells and, ultimately, lead to more robust and predictable devices. 
    more » « less
  5. Uziel, Joe (Ed.)
    Charcoal fragments preserved in soils or sediments are used by scientists to reconstruct fire histories and thereby improve our understanding of past vegetation dynamics and human-plant relationships. Unfortunately, most published methods for charcoal extraction and analysis are incompletely described and are therefore difficult to reproduce. To improve the standardization and replicability of soil charcoal analysis, as well as to facilitate accessibility for non-experts, we developed a detailed, step-by-step protocol to isolate charcoal from soil and to efficiently count and measure charcoal fragments. The extraction phase involves the chemical soaking and wet sieving of soils followed by the collection of macrocharcoal (≥500 μm). The analysis phase is performed semi-automatically using the open-source software ImageJ to count and measure the area, length, and width of fragments from light stereo microscope images by means of threshold segmentation. The protocol yields clean charcoal fragments, a set of charcoal images, and datasets containing total charcoal mass, number of fragments, and morphological measurements (area, length, and width) for each sample. We tested and validated the protocol on 339 soil samples from tropical savannas and forests in eastern lowland Bolivia. We hope that this protocol will be a valuable resource for scientists in a variety of fields who currently study, or wish to study, macroscopic charcoal in soils as a proxy for past fires. 
    more » « less