skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Reproducible protocol for the extraction and semi-automated quantification of macroscopic charcoal from soil
Charcoal fragments preserved in soils or sediments are used by scientists to reconstruct fire histories and thereby improve our understanding of past vegetation dynamics and human-plant relationships. Unfortunately, most published methods for charcoal extraction and analysis are incompletely described and are therefore difficult to reproduce. To improve the standardization and replicability of soil charcoal analysis, as well as to facilitate accessibility for non-experts, we developed a detailed, step-by-step protocol to isolate charcoal from soil and to efficiently count and measure charcoal fragments. The extraction phase involves the chemical soaking and wet sieving of soils followed by the collection of macrocharcoal (≥500 μm). The analysis phase is performed semi-automatically using the open-source software ImageJ to count and measure the area, length, and width of fragments from light stereo microscope images by means of threshold segmentation. The protocol yields clean charcoal fragments, a set of charcoal images, and datasets containing total charcoal mass, number of fragments, and morphological measurements (area, length, and width) for each sample. We tested and validated the protocol on 339 soil samples from tropical savannas and forests in eastern lowland Bolivia. We hope that this protocol will be a valuable resource for scientists in a variety of fields who currently study, or wish to study, macroscopic charcoal in soils as a proxy for past fires.  more » « less
Award ID(s):
1931232
PAR ID:
10572370
Author(s) / Creator(s):
; ;
Editor(s):
Uziel, Joe
Publisher / Repository:
PLOS ONE
Date Published:
Journal Name:
PLOS ONE
Volume:
19
Issue:
7
ISSN:
1932-6203
Page Range / eLocation ID:
e0304198
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Relic charcoal hearths (RCHs) have produced distinct legacy effects in forest soils around the world. Recently, LiDAR imagery has revealed thousands of 18th–early 20th century RCHs in Litchfield County, Connecticut, USA; however, the effects of RCHs on a landscape-scale are not well-documented, particularly fine-scale heterogeneity within RCHs and surrounding soils. This study examines the long-term impacts of charcoal production by measuring RCH soil chemical and physical properties from three perspectives: (1) compared to adjacent reference sites (RSadj), (2) laterally at systematic distances away from the RCH center, and (3) vertically within the RCH soil profile. Mean charcoal abundance was greater in RCH sites than RSadj (p < 0.01). Soil organic carbon (SOC), total C, and extractable Ca2+, Mg2+, Na+ were greater in RCH sites as compared to RSadj (p < 0.01), and available phosphorus (p < 0.01), K+, and trace elements (Mo, Ag, Hg, and Se) were lower (p < 0.05). In vertical profiles, many RCHs had 2 charcoal-rich layers within the anthropic epipedon, demonstrating multiple episodes of charcoal production. Peaks in SOC, C:N, Ca2+, Mg2+ corresponded with charcoal-rich layers. Systematic transect sampling across the RCH boundary identified charcoal fragments in soils at distances up to 25 m beyond the RCH boundary, increasing the surface-level (0–15 cm) area of impact for an individual RCH by more than 30×, from a 5-m radius (RCH area = 78.5 m2) to a 30-m radius (total area of impact = 2826 m2). These findings capture fine-scale variations within and among RCH and reference sites and contribute to estimating the total area of forest soils impacted by historical charcoal production. 
    more » « less
  2. The purpose of this study was to assess the effects of charcoal and earthworm presence in contrasting soil types of northern Japan using the biologically based phosphorus (BBP) extraction method, which employs a variety of plant P acquisition strategies. Using soils developed in serpentine and sedimentary parent materials, we tested the interactive effects of Eisenia japonica (Michaelsen) earthworms and 500 kg ha−1 of dwarf bamboo charcoal (Sasa kurilensis (Rupr.) Makino et Shibata) in a microcosm incubation that lasted four weeks. Soils were extracted in parallel after the incubation with the BBP method using 0.01 M CaCl2 (soluble P), 0.01 M citric acid (chelate-extractable P), 0.02 phosphatase enzyme units ml−1 (enzyme-extractable organic P), and 1.0 M HCl (mineral occluded P). Dwarf bamboo charcoal alone contained up to 444 mg total BBP kg−1 prior to application to soil microcosms. Treatment effects in soil microcosms were highest in sedimentary soil types and where charcoal was combined with earthworms (15.97 mg P kg−1 ± SE 1.23 total inorganic BBP). Recalcitrant inorganic P (HCl extracted) in combination treatments yielded the highest single inorganic BBP measure (12.41 mg kg−1 ± SE 1.11). Our findings suggest that charcoal, as a legacy of wildfire, and native earthworm activity may help stimulate cycling of recalcitrant inorganic BBP pools. 
    more » « less
  3. Hambleton, J. P. (Ed.)
    Soil particles that have been deposited through water or air generally align their largest projected surface area normal to the depositional direction, which generates a cross-anisotropic fabric of granular soils. Researchers have used both two-dimensional (2D) and three-dimensional (3D) images to determine scalar fabric parameters of granular soils, including void ratio, coordination number, and average branch vector length. This study aims to evaluate the accuracy and effectiveness of 2D images to characterize fabric in 3D soils based on scalar parameters. The X-ray computed tomography (X-ray CT) is used to reconstruct the 3D volumetric images of three air-pluviated sand specimens, including crushed limestone, Griffin sand, and glass beads. Then, six slices are obtained by vertically cutting the 3D volumetric image in an angle increment of 30 degrees. The 3D and 2D images are analyzed to determine scalar fabric parameters. The results show that coordination numbers and average branch vector lengths computed from 2D images underestimate these values in 3D granular soils. The void ratios computed from 2D images vary a large range depending on slicing directions, which cannot provide reliable fabric characterizations for 3D granular soils. 
    more » « less
  4. Abstract Desiccation cracking is a frequent natural phenomenon that occurs in drying soil and has a significant negative impact on the mechanical and hydraulic properties of clay or geomaterials in various engineering applications. In this study, recycled glass sand (RGS) was used to reduce the plasticity of clay soil and mitigate desiccation cracks in clay soils. The effect of the RGS particle size and content was investigated using a desiccation crack observation test. Digital image processing technology was used to evaluate the crack rate, length, width, and area during the observation test. The results reveal that the cracking rate was inversely proportional to the RGS content and directly proportional to the RGS particle size. For instance, the cracking rate of clay soil treated with 25% RGS with a particle size of 0.15 mm was reduced to 0.17% compared with untreated soil. The strengths of the untreated and RGS-treated soils were evaluated through unconfined compression tests. The unconfined compressive strength of the RGS-treated clay soil decreased slightly with the addition of RGS. In general, the addition of RGS has great potential for mitigating desiccation cracks in clay soils. 
    more » « less
  5. Claypan soils cover approximately 40,469 km2 in the United States and are characterized by a highly impermeable layer within 0.5 m from the ground surface. This impermeable layer acts as a barrier for infiltrating water, which may increase erosion rates and sediment transport. Two of the main problems associated with these processes are abutment scour and reservoir sedimentation. This study focuses on the undermining of surficial soils due to an impermeable claypan layer in Southeastern Kansas. The potential areas of critical soil loss and hydrologic flow patterns were determined using LiDAR-derived digital elevation maps across two 0.45 km2 sites. These sites were located in areas of both high and low elevation. Electrical resistivity tomography (ERT) was used in areas identified with LiDAR to measure the depth to claypan, which was originally believed to be uniform across the region. The results indicated that the claypan layer was located from 0.5 to 0.75 m and dissipated moving across the site from an area of high elevation to an area of low elevation. Undisturbed soil samples were collected based on the ERT analysis, in areas with and without the claypan. An erosion function apparatus (EFA) was used to directly measure erosion due to sheet flow and to identify the controlling mechanism causing surficial soil loss. The knowledge gained on claypan erosion mechanisms will improve the prediction of near surface soil erodibility to support aging infrastructure. 
    more » « less