skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The all-E. coliTXTL toolbox 3.0: new capabilities of a cell-free synthetic biology platform
Abstract The new generation of cell-free gene expression systems enables the prototyping and engineering of biological systems in vitro over a remarkable scope of applications and physical scales. As the utilization of DNA-directed in vitro protein synthesis expands in scope, developing more powerful cell-free transcription–translation (TXTL) platforms remains a major goal to either execute larger DNA programs or improve cell-free biomanufacturing capabilities. In this work, we report the capabilities of the all-E. coli TXTL toolbox 3.0, a multipurpose cell-free expression system specifically developed for synthetic biology. In non-fed batch-mode reactions, the synthesis of the fluorescent reporter protein eGFP (enhanced green fluorescent protein) reaches 4 mg/ml. In synthetic cells, consisting of liposomes loaded with a TXTL reaction, eGFP is produced at concentrations of >8 mg/ml when the chemical building blocks feeding the reaction diffuse through membrane channels to facilitate exchanges with the outer solution. The bacteriophage T7, encoded by a genome of 40 kb and ∼60 genes, is produced at a concentration of 1013 PFU/ml (plaque forming unit/ml). This TXTL system extends the current cell-free expression capabilities by offering unique strength and properties, for testing regulatory elements and circuits, biomanufacturing biologics or building synthetic cells.  more » « less
Award ID(s):
1844152
PAR ID:
10284159
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Synthetic Biology
ISSN:
2397-7000
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Walker, John M (Ed.)
    Cell-free transcription-translation (TXTL) enables achieving an ever-growing number of applications, ranging from the rapid characterization of DNA parts to the production of biologics. As TXTL systems gain in versatility and efficacy, larger DNAs can be expressed in vitro extending the scope of cell-free biomanufacturing to new territories. The demonstration that complex entities such as infectious bacteriophages can be synthesized from their genomes in TXTL reactions opens new opportunities, especially for biomedical applications. Over the last century, phages have been instrumental in the discovery of many ground-breaking biotechnologies including CRISPR. The primary function of phages is to infect bacteria. In that capacity, phages are considered an alternative approach to tackling current societal problems such as the rise of antibiotic-resistant microbes. TXTL provides alternative means to produce phages and with several advantages over in vivo synthesis methods. In this chapter, we describe the basic procedures to purify phage genomes, cell-free synthesize phages, and quantitate them using an all-E. coli TXTL system. 
    more » « less
  2. null (Ed.)
    Liquid-liquid phase separation (LLPS) is important to control a wide range of reactions from gene expression to protein degradation in a cell-sized space. To bring a better understanding of the compatibility of such phase-separated structures with protein synthesis, we study emergent LLPS in a cell-free transcription-translation (TXTL) reaction. When the TXTL reaction composed of many proteins is concentrated, the uniformly mixed state becomes unstable, and membrane-less phases form spontaneously. This LLPS droplet formation is induced when the TXTL reaction is enclosed in water-in-oil emulsion droplets, in which water evaporates from the surface. As the emulsion droplets shrink, smaller LLPS droplets appear inside the emulsion droplets and coalesce into large phase-separated domains that partition the localization of synthesized reporter proteins. The presence of PEG in the TXTL reaction is important not only for versatile cell-free protein synthesis but also for the formation of two large domains capable of protein partitioning. Our results may shed light on the dynamic interplay of LLPS formation and cell-free protein synthesis toward the construction of synthetic organelles. 
    more » « less
  3. Perez-Fernandez, Jorge (Ed.)
    Cell-free protein expression is increasingly becoming popular for biotechnology, biomedical and research applications. Among cell-free systems, the most popular one is based onEscherichia coli(E.coli). Endogenous nucleases inE.colicell-free transcription-translation (TXTL) degrade the free ends of DNA, resulting in inefficient protein expression from linear DNA templates. RecBCD is a nuclease complex that plays a major role in nuclease activity inE.coli, with the RecB subunit possessing the actual nuclease activity. We created aRecBknockout of anE.colistrain optimized for cell-free expression. We named this new strain Akaby. We demonstrated that Akaby TXTL successfully reduced linear DNA degradations, rescuing the protein expression efficiency from the linear DNA templates. The practicality of Akaby for TXTL is an efficient, simple alternative for linear template expression in cell-free reactions. We also use this work as a model protocol for modifying the TXTL sourceE.colistrain, enabling the creation of TXTL systems with other custom modifications. 
    more » « less
  4. Recently, a new subset of fluorescent proteins has been identified from the Aequorea species of jellyfish. These fluorescent proteins were characterized in vivo; however, there has not been validation of these proteins within cell-free systems. Cell-free systems and technology development is a rapidly expanding field, encompassing foundational research, synthetic cells, bioengineering, biomanufacturing, and drug development. Cell-free systems rely heavily on fluorescent proteins as reporters. Here we characterize and validate this new set of Aequorea proteins for use in a variety of cell-free and synthetic cell expression platforms. 
    more » « less
  5. Abstract Bacteriophages constitute an invaluable biological reservoir for biotechnology and medicine. The ability to exploit such vast resources is hampered by the lack of methods to rapidly engineer, assemble, package genomes, and select phages. Cell-free transcription-translation (TXTL) offers experimental settings to address such a limitation. Here, we describe PHage Engineering by In vitro Gene Expression and Selection (PHEIGES) using T7 phage genome and Escherichia coli TXTL. Phage genomes are assembled in vitro from PCR-amplified fragments and directly expressed in batch TXTL reactions to produce up to 1011PFU/ml engineered phages within one day. We further demonstrate a significant genotype-phenotype linkage of phage assembly in bulk TXTL. This enables rapid selection of phages with altered rough lipopolysaccharides specificity from phage genomes incorporating tail fiber mutant libraries. We establish the scalability of PHEIGES by one pot assembly of such mutants with fluorescent gene integration and 10% length-reduced genome. 
    more » « less