skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Fragile Bits in Off-angle Iris Recognition
As an emerging biometric research, standoff iris recognition systems focus on recognition of non-cooperative subjects in much less constrained environments where their captured images are likely to be non-ideal including being off-angle. Iris biometrics convert unwrapped iris textures into binary iris codes to compare them with other saved codes by measuring their Hamming Distances. The similarity calculation assumes an equal contribution of each individual pixel in iris codes. However, previous studies showed that some pixels (aka. fragile bits) are more error prone than others even in frontal iris images. In addition, off-angle iris images are affected by several challenging factors including corneal refraction and limbus occlusion. These challenges in off-angle images also increase the fragility of bits in iris codes. This paper first presents the pixel inconsistency in iris codes of off-angle images using elliptical segmentation and normalization. The pixel fragility is a result of iris codes warping due to the refraction of light in cornea and occlusion of iris texture at limbus. As another contribution, we propose to identify these fragile pixels in iris codes using edge detection and eliminating them in Hamming distance calculation by masking these fragile bits. Based on the results, the proposed method improves the recognition performance in off-angle iris images where the average genuine Hamming distance score reduced from 0.3082 to 0.1244 and the equal error rate is lowered 19%.  more » « less
Award ID(s):
2100483
PAR ID:
10284374
Author(s) / Creator(s):
Date Published:
Journal Name:
2021 IEEE International Workshop on Biometrics and Forensics
Page Range / eLocation ID:
1 to 6
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Alam, Mohammad S; Asari, Vijayan K (Ed.)
    Iris recognition is a reliable biometric identification method known for its low false-acceptance rates. However, capturing ideal iris images is often challenging and time-consuming, which can degrade the performance of iris recognition systems when using non-ideal images. Enhancing iris recognition performance for non-ideal images would expedite and make the process more flexible. Off-angle iris images are a common type of non-ideal iris images, and converting them to their frontal version is not as simple as making geometric transformations on the off-angle iris images. Due to challenging factors such as corneal refraction and limbus occlusion, frontal projection requires a more comprehensive approach. Pix2Pix generative adversarial networks (GANs), with their pairwise image conversion capability, provide the ideal foil for such a tailored approach. We demonstrate how Pix2Pix GANs can effectively be used for the problem of converting off-angle iris images to frontal iris images. We provide a comprehensive exploration of techniques using Pix2Pix GAN to enhance off-angle to frontal iris image transformation by introducing variations in the loss functions of Pix2Pix GAN for better capturing the iris textures and the low contrast, changing the medium of input from normalized iris to iris codes, and ultimately delving deeper into studying which regions of the Gabor filters contribute the most to iris recognition performance. 
    more » « less
  2. Iris recognition is known to be a robust biometric method, leveraging distinctive iris patterns for reliable identification. However, challenges arise in traditional approaches, especially in non-ideal images captured in environments where subjects can freely move around. This research focuses on the impact of eyelid occlusion on off-angle iris recognition within a traditional framework. The primary objectives are to i) assess the impact of eye blink on overall recognition performance; ii) explore the effects on each specific angle; and iii) examine the occlusion level required to maintain an acceptable recognition performance in a traditional iris recognition pipeline. To generate different levels of eyelid occlusion, we manipulated the eyelid segmentation results to mimic eye blinking due to lack of adequate amount of eye blinking images in publicly available datasets. We conducted three sets of experiments using frontal and off-angle iris images from 100 different subjects. Based on the results, up to a certain occlusion level (60%), eyelid occlusion enhances performance for severe off-angle images by masking distortion-prone iris portions. This improvement comes from the masking of non-ideal portions of the off-angle iris images that are distorted by the refraction of light through the cornea caused by the gaze angle. This insight offers potential improvements for traditional iris recognition, highlighting the nuanced interplay of occlusion and gaze angle on recognition performance. 
    more » « less
  3. Person identification using biometrics has become a safer and trustworthy mechanism with the advancement of technology. Among all biometric identification methods, iris recognition has achieved very low false acceptance rates due to its complex and unique patterns. The low acceptance rates apply only to frontal iris images. Capturing frontal iris images is not always possible, especially in uncontrolled environments, where most of the iris images captured tend to be non-ideal, such as off-angle images. Off-angle iris images suffer from several issues, including corneal refraction, limbus occlusion, the effect of gaze angle, and depth of field blur. These effects distort the iris patterns, causing the similarity scores between the same individual to widen and scores between different individuals to become closer. This also causes false acceptance rates to increase, as it increases the chances of misclassification. This highlights the need for improving the performance of off-angle iris recognition. By leveraging the low false-acceptance rates of the frontal iris images, we build generated frontal version of the iris images using off-angle iris images and achieved better performance compared with the perspective transformation. We built a modified version of the Pix2Pix GAN to achieve the frontal projection of off-angle iris images. Instead of using a Mean Squared loss function in the Pix2Pix GAN, we use a combination of Mean Squared loss function, Matrix Multiplication loss, and SSIM loss function to generate sharper images that can capture the textural information of the original image better. 
    more » « less
  4. Non-invasive, efficient, physical token-less, accurate and stable identification methods for newborns may prevent baby swapping at birth, limit baby abductions and improve post-natal health monitoring across geographies, within the context of both the formal (i.e., hospitals) and informal (i.e., humanitarian and fragile settings) health sectors. This paper explores the feasibility of application iris recognition to build biometric identifiers for 4-6 week old infants. We (a) collected near infrared (NIR) iris images from 17 infants using a specially-designed NIR iris sensor; (b) evaluated six iris recognition methods to assess readiness of the state-of-the-art iris recognition to be applied to newborns and infants; (c) proposed a new segmentation model that correctly detects iris texture within infants iris images, and coupled it with several iris texture encoding approaches to offer, to the first of our knowledge, a fully-operational infant iris recognition system; and, (d) trained a StyleGAN-based model to synthesize iris images mimicking samples acquired from infants to deliver to the research community privacy-safe in- fant iris images. The proposed system, incorporating the specially-designed iris sensor and segmenter, and applied to the collected infant iris samples, achieved Equal Error Rate (EER) of 3% and Area Under ROC Curve (AUC) of 99%, compared to EER20% and AUC88% obtained for state of the art adult iris recognition systems. This suggests that it may be feasible to design methods that succesfully extract biometric features from infant irises. 
    more » « less
  5. Agaian, Sos S.; DelMarco, Stephen P.; Asari, Vijayan K. (Ed.)
    Iris recognition is a widely used biometric technology that has high accuracy and reliability in well-controlled environments. However, the recognition accuracy can significantly degrade in non-ideal scenarios, such as off-angle iris images. To address these challenges, deep learning frameworks have been proposed to identify subjects through their off-angle iris images. Traditional CNN-based iris recognition systems train a single deep network using multiple off-angle iris image of the same subject to extract the gaze invariant features and test incoming off-angle images with this single network to classify it into same subject class. In another approach, multiple shallow networks are trained for each gaze angle that will be the experts for specific gaze angles. When testing an off-angle iris image, we first estimate the gaze angle and feed the probe image to its corresponding network for recognition. In this paper, we present an analysis of the performance of both single and multimodal deep learning frameworks to identify subjects through their off-angle iris images. Specifically, we compare the performance of a single AlexNet with multiple SqueezeNet models. SqueezeNet is a variation of the AlexNet that uses 50x fewer parameters and is optimized for devices with limited computational resources. Multi-model approach using multiple shallow networks, where each network is an expert for a specific gaze angle. Our experiments are conducted on an off-angle iris dataset consisting of 100 subjects captured at 10-degree intervals between -50 to +50 degrees. The results indicate that angles that are more distant from the trained angles have lower model accuracy than the angles that are closer to the trained gaze angle. Our findings suggest that the use of SqueezeNet, which requires fewer parameters than AlexNet, can enable iris recognition on devices with limited computational resources while maintaining accuracy. Overall, the results of this study can contribute to the development of more robust iris recognition systems that can perform well in non-ideal scenarios. 
    more » « less