skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Challenges in Off-angle to Frontal Iris Image Conversion using Pix2Pix Generative Adversarial Networks
Person identification using biometrics has become a safer and trustworthy mechanism with the advancement of technology. Among all biometric identification methods, iris recognition has achieved very low false acceptance rates due to its complex and unique patterns. The low acceptance rates apply only to frontal iris images. Capturing frontal iris images is not always possible, especially in uncontrolled environments, where most of the iris images captured tend to be non-ideal, such as off-angle images. Off-angle iris images suffer from several issues, including corneal refraction, limbus occlusion, the effect of gaze angle, and depth of field blur. These effects distort the iris patterns, causing the similarity scores between the same individual to widen and scores between different individuals to become closer. This also causes false acceptance rates to increase, as it increases the chances of misclassification. This highlights the need for improving the performance of off-angle iris recognition. By leveraging the low false-acceptance rates of the frontal iris images, we build generated frontal version of the iris images using off-angle iris images and achieved better performance compared with the perspective transformation. We built a modified version of the Pix2Pix GAN to achieve the frontal projection of off-angle iris images. Instead of using a Mean Squared loss function in the Pix2Pix GAN, we use a combination of Mean Squared loss function, Matrix Multiplication loss, and SSIM loss function to generate sharper images that can capture the textural information of the original image better.  more » « less
Award ID(s):
2100483
PAR ID:
10540362
Author(s) / Creator(s):
;
Publisher / Repository:
IEEE
Date Published:
ISBN:
979-8-3503-3726-6
Page Range / eLocation ID:
1 to 8
Format(s):
Medium: X
Location:
Ljubljana, Slovenia
Sponsoring Org:
National Science Foundation
More Like this
  1. Alam, Mohammad S; Asari, Vijayan K (Ed.)
    Iris recognition is a reliable biometric identification method known for its low false-acceptance rates. However, capturing ideal iris images is often challenging and time-consuming, which can degrade the performance of iris recognition systems when using non-ideal images. Enhancing iris recognition performance for non-ideal images would expedite and make the process more flexible. Off-angle iris images are a common type of non-ideal iris images, and converting them to their frontal version is not as simple as making geometric transformations on the off-angle iris images. Due to challenging factors such as corneal refraction and limbus occlusion, frontal projection requires a more comprehensive approach. Pix2Pix generative adversarial networks (GANs), with their pairwise image conversion capability, provide the ideal foil for such a tailored approach. We demonstrate how Pix2Pix GANs can effectively be used for the problem of converting off-angle iris images to frontal iris images. We provide a comprehensive exploration of techniques using Pix2Pix GAN to enhance off-angle to frontal iris image transformation by introducing variations in the loss functions of Pix2Pix GAN for better capturing the iris textures and the low contrast, changing the medium of input from normalized iris to iris codes, and ultimately delving deeper into studying which regions of the Gabor filters contribute the most to iris recognition performance. 
    more » « less
  2. Iris recognition is known to be a robust biometric method, leveraging distinctive iris patterns for reliable identification. However, challenges arise in traditional approaches, especially in non-ideal images captured in environments where subjects can freely move around. This research focuses on the impact of eyelid occlusion on off-angle iris recognition within a traditional framework. The primary objectives are to i) assess the impact of eye blink on overall recognition performance; ii) explore the effects on each specific angle; and iii) examine the occlusion level required to maintain an acceptable recognition performance in a traditional iris recognition pipeline. To generate different levels of eyelid occlusion, we manipulated the eyelid segmentation results to mimic eye blinking due to lack of adequate amount of eye blinking images in publicly available datasets. We conducted three sets of experiments using frontal and off-angle iris images from 100 different subjects. Based on the results, up to a certain occlusion level (60%), eyelid occlusion enhances performance for severe off-angle images by masking distortion-prone iris portions. This improvement comes from the masking of non-ideal portions of the off-angle iris images that are distorted by the refraction of light through the cornea caused by the gaze angle. This insight offers potential improvements for traditional iris recognition, highlighting the nuanced interplay of occlusion and gaze angle on recognition performance. 
    more » « less
  3. null (Ed.)
    Accurate segmentation and parameterization of the iris in eye images still remain a significant challenge for achieving robust iris recognition, especially in off‐angle images captured in less constrained environments. While deep learning techniques (i.e. segmentation‐based convolutional neural networks (CNNs)) are increasingly being used to address this problem, there is a significant lack of information about the mechanism of the related distortions affecting the performance of these networks and no comprehensive recognition framework is dedicated, in particular, to off‐angle iris recognition using such modules. In this work, the general effect of different gaze angles on ocular biometrics is discussed, and the findings are then related to the CNN‐based off‐angle iris segmentation results and the subsequent recognition performance. An improvement scheme is also introduced to compensate for some segmentation degradations caused by the off‐angle distortions, and a new gaze‐angle estimation and parameterization module is further proposed to estimate and re‐project (correct) the offangle iris images back to frontal view. Taking benefit of these, several approaches (pipelines) are formulated to configure an end‐to‐end framework for the CNN‐based offangle iris segmentation and recognition. Within the framework of these approaches, a series of experiments is carried out to determine whether (i) improving the segmentation outputs and/or correcting the output iris images before or after the segmentation can compensate for some off‐angle distortions, (ii) a CNN trained on frontal eye images is capable of detecting and extracting the learnt features on the corrected images, or (iii) the generalisation capability of the network can be improved by training it on iris images of different gaze angles. Finally, the recognition performance of the selected approach is compared against some state‐of‐the‐art off‐angle iris recognition algorithms. 
    more » « less
  4. Alam, Mohammad S.; Asari, Vijayan K. (Ed.)
    Iris recognition is one of the well-known areas of biometric research. However, in real-world scenarios, subjects may not always provide fully open eyes, which can negatively impact the performance of existing systems. Therefore, the detection of blinking eyes in iris images is crucial to ensure reliable biometric data. In this paper, we propose a deep learning-based method using a convolutional neural network to classify blinking eyes in off-angle iris images into four different categories: fully-blinked, half-blinked, half-opened, and fully-opened. The dataset used in our experiments includes 6500 images of 113 subjects and contains images of a mixture of both frontal and off-angle views of the eyes from -50 to 50 in gaze angle. We train and test our approach using both frontal and off-angle images and achieve high classification performance for both types of images. Compared to training the network with only frontal images, our approach shows significantly better performance when tested on off-angle images. These findings suggest that training the model with a more diverse set of off-angle images can improve its performance for off-angle blink detection, which is crucial for real-world applications where the iris images are often captured at different angles. Overall, the deep learning-based blink detection method can be used as a standalone algorithm or integrated into existing standoff biometrics frameworks to improve their accuracy and reliability, particularly in scenarios where subjects may blink. 
    more » « less
  5. null (Ed.)
    While deep learning techniques are increasingly becoming a tool of choice for iris segmentation, yet there is no comprehensive recognition framework dedicated for off-angle iris recognition using such modules. In this work, we investigate the effect of different gaze-angles on the CNN based off-angle iris segmentations, and their recognition performance, introducing an improvement scheme to compensate for some segmentation degradations caused by the off-angle distortions. Also, we propose an off-angle parameterization algorithm to re-project the off-angle images back to frontal view. Taking benefit of these, we further investigate if: (i) improving the segmentation outputs and/or correcting the iris images before or after the segmentation, can compensate for off-angle distortions, or (ii) the generalization capability of the network can be improved, by training it on iris images of different gaze-angles. In each experimental step, segmentation accuracy and the recognition performance are evaluated, and the results are analyzed and compared. 
    more » « less