skip to main content


Title: Commentary on the life history special issue: The fast-slow continuum is not the end-game of life history evolution, human or otherwise
Award ID(s):
1661342
NSF-PAR ID:
10284413
Author(s) / Creator(s):
Date Published:
Journal Name:
Evolution and Human Behavior
Volume:
42
Issue:
3
ISSN:
1090-5138
Page Range / eLocation ID:
281 to 283
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Synopsis New biophysical theory and electronic databases raise the prospect of deriving fundamental rules of life, a conceptual framework for how the structures and functions of molecules, cells, and individual organisms give rise to emergent patterns and processes of ecology, evolution, and biodiversity. This framework is very general, applying across taxa of animals from 10–10 g protists to 108 g whales, and across environments from deserts and abyssal depths to rain forests and coral reefs. It has several hallmarks: (1) Energy is the ultimate limiting resource for organisms and the currency of biological fitness. (2) Most organisms are nearly equally fit, because in each generation at steady state they transfer an equal quantity of energy (˜22.4 kJ/g) and biomass (˜1 g/g) to surviving offspring. This is the equal fitness paradigm (EFP). (3) The enormous diversity of life histories is due largely to variation in metabolic rates (e.g., energy uptake and expenditure via assimilation, respiration, and production) and biological times (e.g., generation time). As in standard allometric and metabolic theory, most physiological and life history traits scale approximately as quarter-power functions of body mass, m (rates as ∼m–1/4 and times as ∼m1/4), and as exponential functions of temperature. (4) Time is the fourth dimension of life. Generation time is the pace of life. (5) There is, however, considerable variation not accounted for by the above scalings and existing theories. Much of this “unexplained” variation is due to natural selection on life history traits to adapt the biological times of generations to the clock times of geochronological environmental cycles. (6) Most work on biological scaling and metabolic ecology has focused on respiration rate. The emerging synthesis applies conceptual foundations of energetics and the EFP to shift the focus to production rate and generation time. 
    more » « less
  2. Abstract

    The concept of a pace‐of‐life syndrome describes inter‐ and intraspecific variation in several life‐history traits along a slow‐to‐fast pace‐of‐life continuum, with long lifespans, low reproductive and metabolic rates, and elevated somatic defences at the slow end of the continuum and the opposite traits at the fast end. Pace‐of‐life can vary in relation to local environmental conditions (e.g. latitude, altitude), and here we propose that this variation may also occur along an anthropogenically modified environmental gradient. Based on a body of literature supporting the idea that city birds have longer lifespans, we predict that urban birds have a slower pace‐of‐life compared to rural birds and thus invest more in self maintenance and less in annual reproduction. Our statistical meta‐analysis of two key traits related to pace‐of‐life, survival and breeding investment (clutch size), indicated that urban birds generally have higher survival, but smaller clutch sizes. The latter finding (smaller clutches in urban habitats) seemed to be mainly a characteristic of smaller passerines. We also reviewed urbanization studies on other traits that can be associated with pace‐of‐life and are related to either reproductive investment or self‐maintenance. Though sample sizes were generally too small to conduct formal meta‐analyses, published literature suggests that urban birds tend to produce lower‐quality sexual signals and invest more in offspring care. The latter finding is in agreement with the adult survival hypothesis, proposing that higher adult survival prospects favour investment in fewer offspring per year. According to our hypothesis, differences in age structure should arise between urban and rural populations, providing a novel alternative explanation for physiological differences and earlier breeding. We encourage more research investigating how telomere dynamics, immune defences, antioxidants and oxidative damage in different tissues vary along the urbanization gradient, and suggest that applying pace‐of‐life framework to studies of variation in physiological traits along the urbanization gradient might be the next direction to improve our understanding of urbanization as an evolutionary process.

     
    more » « less
  3. Abstract The genetic basis of traits shapes and constrains how adaptation proceeds in nature; rapid adaptation can proceed using stores of polygenic standing genetic variation or hard selective sweeps, and increasing polygenicity fuels genetic redundancy, reducing gene re-use (genetic convergence). Guppy life history traits evolve rapidly and convergently among natural high- and low-predation environments in northern Trinidad. This system has been studied extensively at the phenotypic level, but little is known about the underlying genetic architecture. Here, we use four independent F2 QTL crosses to examine the genetic basis of seven (five female, two male) guppy life history phenotypes and discuss how these genetic architectures may facilitate or constrain rapid adaptation and convergence. We use RAD-sequencing data (16,539 SNPs) from 370 male and 267 female F2 individuals. We perform linkage mapping, estimates of genome-wide and per-chromosome heritability (multi-locus associations), and QTL mapping (single-locus associations). Our results are consistent with architectures of many loci of small-effect for male age and size at maturity and female interbrood period. Male trait associations are clustered on specific chromosomes, but female interbrood period exhibits a weak genome-wide signal suggesting a potentially highly polygenic component. Offspring weight and female size at maturity are also associated with a single significant QTL each. These results suggest rapid, repeatable phenotypic evolution of guppies may be facilitated by polygenic trait architectures, but subsequent genetic redundancy may limit gene re-use across populations, in agreement with an absence of strong signatures of genetic convergence from recent analyses of wild guppies. 
    more » « less