skip to main content

Title: Identification of Self-Excited Systems Using Discrete-Time, Time-Delayed Lur’e Models
Identification of self excited systems
Authors:
;
Award ID(s):
1634709
Publication Date:
NSF-PAR ID:
10284432
Journal Name:
Proceedings of the American Control Conference
Page Range or eLocation-ID:
3929-3934
ISSN:
0743-1619
Sponsoring Org:
National Science Foundation
More Like this
  1. DTW calculates the similarity or alignment between two signals, subject to temporal warping. However, its computational complexity grows exponentially with the number of time-series. Although there have been algorithms developed that are linear in the number of time-series, they are generally quadratic in time-series length. The exception is generalized time warping (GTW), which has linear computational cost. Yet, it can only identify simple time warping functions. There is a need for a new fast, high-quality multisequence alignment algorithm. We introduce trainable time warping (TTW), whose complexity is linear in both the number and the length of time-series. TTW performs alignmentmore »in the continuoustime domain using a sinc convolutional kernel and a gradient-based optimization technique. We compare TTW and GTW on S5 UCR datasets in time-series averaging and classification. TTW outperforms GTW on 67.1% of the datasets for the averaging tasks, and 61.2% of the datasets for the classification tasks.« less