skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on July 20, 2026

Title: Real-Time LaCAM for Real-Time MAPF
The vast majority of Multi-Agent Path Finding (MAPF) methods with completeness guarantees require planning full-horizon paths. However, planning full-horizon paths can take too long and be impractical in real-world applications. Instead, real-time planning and execution, which only allows the planner a finite amount of time before executing and replanning, is more practical for real-world multi-agent systems. Several methods utilize real-time planning schemes but none are provably complete, which leads to livelock or deadlock. Our main contribution is Real-Time LaCAM, the first Real-Time MAPF method with provable completeness guarantees. We do this by leveraging LaCAM in an incremental fashion. Our results show how we can iteratively plan for congested environments with a cutoff time of milliseconds while still maintaining the same success rate as full-horizon LaCAM. We also show how it can be used with a single-step learned MAPF policy.  more » « less
Award ID(s):
2328671
PAR ID:
10634336
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Symposium on Combinatorial Search (SoCS)
Date Published:
Journal Name:
Proceedings of the International Symposium on Combinatorial Search
Volume:
18
ISSN:
2832-9171
Page Range / eLocation ID:
196 to 200
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Traditional multi-agent path finding (MAPF) methods try to compute entire collision free start-goal paths, with several algorithms offering completeness guarantees. However, computing partial paths offers significant advantages including faster planning, adaptability to changes, and enabling decentralized planning. Methods that compute partial paths employ a windowed approach and only try to find collision free paths for a limited timestep horizon. While this improves flexibility, this adaptation introduces incompleteness; all existing windowed approaches can become stuck in deadlock or livelock. Our main contribution is to introduce our framework, WinC-MAPF, for Windowed MAPF that enables completeness. Our framework leverages heuristic update insights from single-agent real-time heuristic search algorithms and agent independence ideas from MAPF algorithms. We also develop Single-Step Conflict Based Search (SS-CBS), an instantiation of this framework using a novel modification to CBS. We show how SS-CBS, which only plans a single step and updates heuristics, can effectively solve tough scenarios where existing windowed approaches fail. 
    more » « less
  2. An exciting frontier in robotic manipulation is the use of multiple arms at once. However, planning concurrent motions is a challenging task using current methods. The high-dimensional composite state space renders many well-known motion planning algorithms intractable.Recently, Multi-Agent Path Finding (MAPF) algorithms have shown promise in discrete 2D domains, providing rigorous guarantees. However, widely used conflict-based methods in MAPF assume an efficient single-agent motion planner. This poses challenges in adapting them to manipulation cases where this assumption does not hold, due to the high dimensionality of configuration spaces and the computational bottlenecks associated with collision checking.To this end, we propose an approach for accelerating conflict-based search algorithms by leveraging their repetitive and incremental nature -- making them tractable for use in complex scenarios involving multi-arm coordination in obstacle-laden environments. We show that our method preserves completeness and bounded sub-optimality guarantees, and demonstrate its practical efficacy through a set of experiments with up to 10 robotic arms. 
    more » « less
  3. null (Ed.)
    In many real-world scenarios, the time it takes for a mobile agent, e.g., a robot, to move from one location to another may vary due to exogenous events and be difficult to predict accurately. Planning in such scenarios is challenging, especially in the context of Multi-Agent Pathfinding (MAPF), where the goal is to find paths to multiple agents and temporal coordination is necessary to avoid collisions. In this work, we consider a MAPF problem with this form of time uncertainty, where we are only given upper and lower bounds on the time it takes each agent to move. The objective is to find a safe solution, which is a solution that can be executed by all agents and is guaranteed to avoid collisions. We propose two complete and optimal algorithms for finding safe solutions based on well-known MAPF algorithms, namely, A* with Operator Decomposition (A* + OD) and Conflict-Based Search (CBS). Experimentally, we observe that on several standard MAPF grids the CBS-based algorithm performs better. We also explore the option of online replanning in this context, i.e., modifying the agents' plans during execution, to reduce the overall execution cost. We consider two online settings: (a) when an agent can sense the current time and its current location, and (b) when the agents can also communicate seamlessly during execution. For each setting, we propose a replanning algorithm and analyze its behavior theoretically and empirically. Our experimental evaluation confirms that indeed online replanning in both settings can significantly reduce solution cost. 
    more » « less
  4. The Multi-Agent Path Finding (MAPF) problem involves planning collision-free paths for multiple agents in a shared environment. The majority of MAPF solvers rely on the assumption that an agent can arrive at a specific location at a specific timestep. However, real-world execution uncertainties can cause agents to deviate from this assumption, leading to collisions and deadlocks. Prior research solves this problem by having agents follow a Temporal Plan Graph (TPG), enforcing a consistent passing order at every location as defined in the MAPF plan. However, we show that TPGs are overly strict because, in some circumstances, satisfying the passing order requires agents to wait unnecessarily, leading to longer execution time. To overcome this issue, we introduce a new graphical representation called a Bidirectional Temporal Plan Graph (BTPG), which allows switching passing orders during execution to avoid unnecessary waiting time. We design two anytime algorithms for constructing a BTPG: BTPG-naïve and BTPG-optimized. Experimental results show that following BTPGs consistently outperforms following TPGs, reducing unnecessary waits by 8-20%. 
    more » « less
  5. Multi-Agent Path Finding (MAPF) is the problem of moving a team of agents from their start locations to their goal locations without collisions. We study the lifelong variant of MAPF where agents are constantly engaged with new goal locations, such as in warehouses. We propose a new framework for solving lifelong MAPF by decomposing the problem into a sequence of Windowed MAPF instances, where a Windowed MAPF solver resolves collisions among the paths of agents only within a finite time horizon and ignores collisions beyond it. Our framework is particularly well suited to generating pliable plans that adapt to continually arriving new goal locations. We evaluate our framework with a variety of MAPF solvers and show that it can produce high-quality solutions for up to 1,000 agents, significantly outperforming existing methods. 
    more » « less