skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Designing Human-Autonomy Teaming Experiments Through Reinforcement Learning
This paper creates and defines a framework for building and implementing human-autonomy teaming experiments that enable the utilization of modern reinforcement learning models. These models are used to train artificial agents to then interact alongside humans in a human-autonomy team. The framework was synthesized from experience gained redesigning a previously known and validated team task simulation environment known as NeoCITIES. Through this redesign, several important high-level distinctions were made that regarded both the artificial agent and the task simulation itself. The distinctions within the framework include gamification, access to high-performance computing, a proper reward function, an appropriate team task simulation, and customizability. This framework enables researchers to create experiments that are more usable for the human and more closely resemble real-world human-autonomy interactions. The framework also allows researchers to create veritable and robust experimental platforms meant to study human-autonomy teaming for years to come.  more » « less
Award ID(s):
1829008
PAR ID:
10284456
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Proceedings of the Human Factors and Ergonomics Society Annual Meeting
Volume:
64
Issue:
1
ISSN:
2169-5067
Page Range / eLocation ID:
1426 to 1430
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Technological advancement goes hand in hand with economic advancement, meaning applied industries like manufacturing, medicine, and retail are set to leverage new practices like human-autonomy teams. These human-autonomy teams call for deep integration between artificial intelligence and the human workers that make up a majority of the workforce. This paper identifies the core principles of the human-autonomy teaming literature relevant to the integration of human-autonomy teams in applied contexts and research due to this large scale implementation of human-autonomy teams. A framework is built and defined from these fundamental concepts, with specific examples of its use in applied contexts and the interactions between various components of the framework. This framework can be utilized by practitioners of human-autonomy teams, allowing them to make informed decisions regarding the integration and training of human-autonomy teams. 
    more » « less
  2. Effective human-AI collaboration requires agents to adopt their roles and levels of support based on human needs, task requirements, and complexity. Traditional human-AI teaming often relies on a pre-determined robot communication scheme, restricting teamwork adaptability in complex tasks. Leveraging the strong communication capabilities of Large Language Models (LLMs), we propose a Human-Robot Teaming Framework with Multi-Modal Language feedback (HRT-ML), a framework designed to enhance human-robot interaction by adjusting the frequency and content of language-based feedback. The HRT-ML framework includes two core modules: a Coordinator for high-level, low-frequency strategic guidance and a Manager for task-specific, high-frequency instructions, enabling passive and active interactions with human teammates. To assess the impact of language feedback in collaborative scenarios, we conducted experiments in an enhanced Overcooked-AI game environment with varying levels of task complexity (easy, medium, hard) and feedback frequency (inactive, passive, active, superactive). Our results show that as task complexity increases relative to human capabilities, human teammates exhibited stronger preferences toward robotic agents that can offer frequent, proactive support. However, when task complexities exceed the LLM's capacity, noisy and inaccurate feedback from superactive agents can instead hinder team performance, as it requires human teammates to increase their effort to interpret and respond to the large amount of communications, with limited performance return. Our results offer a general principle for robotic agents to dynamically adjust their levels and frequencies of communication to work seamlessly with humans and achieve improved teaming performance. 
    more » « less
  3. Objective This work examines two human–autonomy team (HAT) training approaches that target communication and trust calibration to improve team effectiveness under degraded conditions. Background Human–autonomy teaming presents challenges to teamwork, some of which may be addressed through training. Factors vital to HAT performance include communication and calibrated trust. Method Thirty teams of three, including one confederate acting as an autonomous agent, received either entrainment-based coordination training, trust calibration training, or control training before executing a series of missions operating a simulated remotely piloted aircraft. Automation and autonomy failures simulating degraded conditions were injected during missions, and measures of team communication, trust, and task efficiency were collected. Results Teams receiving coordination training had higher communication anticipation ratios, took photos of targets faster, and overcame more autonomy failures. Although autonomy failures were introduced in all conditions, teams receiving the calibration training reported that their overall trust in the agent was more robust over time. However, they did not perform better than the control condition. Conclusions Training based on entrainment of communications, wherein introduction of timely information exchange through one team member has lasting effects throughout the team, was positively associated with improvements in HAT communications and performance under degraded conditions. Training that emphasized the shortcomings of the autonomous agent appeared to calibrate expectations and maintain trust. Applications Team training that includes an autonomous agent that models effective information exchange may positively impact team communication and coordination. Training that emphasizes the limitations of an autonomous agent may help calibrate trust. 
    more » « less
  4. Significant advancements have occurred in the application of Large Language Models (LLMs) for social simulations. Despite this, their abilities to perform teaming in task-oriented social events are underexplored. Such capabilities are crucial if LLMs are to effectively mimic human-like social behaviors and form efficient teams to solve tasks. To bridge this gap, we introduce MetaAgents, a social simulation framework populated with LLM-based agents. MetaAgents facilitates agent engagement in conversations and a series of decision making within social contexts, serving as an appropriate platform for investigating interactions and interpersonal decision-making of agents. In particular, we construct a job fair environment as a case study to scrutinize the team assembly and skill-matching behaviors of LLM-based agents. We take advantage of both quantitative metrics evaluation and qualitative text analysis to assess their teaming abilities at the job fair. Our evaluation demonstrates that LLM-based agents perform competently in making rational decisions to develop efficient teams. However, we also identify limitations that hinder their effectiveness in more complex team assembly tasks. Our work provides valuable insights into the role and evolution of LLMs in task-oriented social simulations. 
    more » « less
  5. Effective human-human and human-autonomy teamwork is critical but often challenging to perfect. The challenge is particularly relevant in time-critical domains, such as healthcare and disaster response, where the time pressures can make coordination increasingly difficult to achieve and the consequences of imperfect coordination can be severe. To improve teamwork in these and other domains, we present TIC: an automated intervention approach for improving coordination between team members. Using BTIL, a multi-agent imitation learning algorithm, our approach first learns a generative model of team behavior from past task execution data. Next, it utilizes the learned generative model and team's task objective (shared reward) to algorithmically generate execution-time interventions. We evaluate our approach in synthetic multi-agent teaming scenarios, where team members make decentralized decisions without full observability of the environment. The experiments demonstrate that the automated interventions can successfully improve team performance and shed light on the design of autonomous agents for improving teamwork. 
    more » « less