skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Is Community Relevance Enough? Civic and Science Identity Impact of Microbiology CUREs Focused on Community Environmental Justice
Course-based undergraduate research experiences (CUREs) often involve a component where the outcomes of student research are broadly relevant to outside stakeholders. We wanted to see if building courses around an environmental justice issue relevant to the local community would impact students’ sense of civic engagement and appreciation of the relevance of scientific research to the community. In this quasi-experimental study, we assessed civic engagement and scientific identity gains ( N = 98) using pre- and post-semester surveys and open-ended interview responses in three different CUREs taught simultaneously at three different universities. All three CURES were focused on an environmental heavy metal pollution issue predominantly affecting African–Americans in Birmingham, Alabama. While we found increases in students’ sense of science efficacy and identity, our team was unable to detect meaningful changes in civic engagement levels, all of which were initially quite high. However, interviews suggested that students were motivated to do well in their research because the project was of interest to outside stakeholders. Our observations suggest that rather than directly influencing students’ civic engagement, the “broadly relevant” component of our CUREs engaged their pre-existing high levels of engagement to increase their engagement with the material, possibly influencing gains in science efficacy and science identity. Our observations are consistent with broader community relevance being an important component of CURE success, but do not support our initial hypothesis that CURE participation would influence students’ attitudes toward the civic importance of science.  more » « less
Award ID(s):
1826988
PAR ID:
10284501
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Frontiers in Microbiology
Volume:
11
ISSN:
1664-302X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Wang, Jack (Ed.)
    The Fly-CURE is a genetics-focused multi-institutional Course-Based Undergraduate Research Experience (CURE) that provides undergraduate students with hands-on research experiences within a course. Through the Fly-CURE, undergraduate students at diverse types of higher education institutions across the United States map and characterize novel mutants isolated from a genetic screen in Drosophila melanogaster . To date, more than 20 mutants have been studied across 20 institutions, and our scientific data have led to eleven publications with more than 500 students as authors. To evaluate the impact of the Fly-CURE experience on students, we developed and validated assessment tools to identify students’ perceived research self-efficacy, sense of belonging in science, and intent to pursue additional research opportunities. Our data, collected over three academic years and involving 14 institutions and 480 students, show gains in these metrics after completion of the Fly-CURE across all student subgroups analyzed, including comparisons of gender, academic status, racial and ethnic groups, and parents’ educational background. Importantly, our data also show differential gains in the areas of self-efficacy and interest in seeking additional research opportunities between Fly-CURE students with and without prior research experience, illustrating the positive impact of research exposure (dosage) on student outcomes. Altogether, our data indicate that the Fly-CURE experience has a significant impact on students’ efficacy with research methods, sense of belonging to the scientific research community, and interest in pursuing additional research experiences. 
    more » « less
  2. Rumain, Barbara T. (Ed.)
    Course-based undergraduate research experiences (CUREs) are laboratory courses that integrate broadly relevant problems, discovery, use of the scientific process, collaboration, and iteration to provide more students with research experiences than is possible in individually mentored faculty laboratories. Members of the national Malate dehydrogenase CUREs Community (MCC) investigated the differences in student impacts between traditional laboratory courses (control), a short module CURE within traditional laboratory courses (mCURE), and CUREs lasting the entire course (cCURE). The sample included approximately 1,500 students taught by 22 faculty at 19 institutions. We investigated course structures for elements of a CURE and student outcomes including student knowledge, student learning, student attitudes, interest in future research, overall experience, future GPA, and retention in STEM. We also disaggregated the data to investigate whether underrepresented minority (URM) outcomes were different from White and Asian students. We found that the less time students spent in the CURE the less the course was reported to contain experiences indicative of a CURE. The cCURE imparted the largest impacts for experimental design, career interests, and plans to conduct future research, while the remaining outcomes were similar between the three conditions. The mCURE student outcomes were similar to control courses for most outcomes measured in this study. However, for experimental design, the mCURE was not significantly different than either the control or cCURE. Comparing URM and White/Asian student outcomes indicated no difference for condition, except for interest in future research. Notably, the URM students in the mCURE condition had significantly higher interest in conducting research in the future than White/Asian students. 
    more » « less
  3. ABSTRACT We previously developed and assessed “The Art of Microbiology,” a course-based undergraduate research experience (CURE) which uses agar art to spur student experimentation, where we found student outcomes related to science persistence. However, these outcomes were not correlated with specific activities and gains were not reported from more than one class. In this study, we explored which of the three major activities in this CURE—agar art, experimental design, or poster presentations—affected student engagement and outcomes associated with improved understanding of the nature of science (NOS). The Art of Microbiology was studied in three microbiology teaching laboratories: at a research university with either the CURE developer (18 students) or a CURE implementer (39 students) and at a community college with a CURE implementer (25 students). Our quasi-experimental mixed methods study used pre/post-NOS surveys and semi-structured class-wide interviews. Community college students had lower baseline NOS responses but had gains in NOS similar to research university students post-CURE. We surveyed research university students following each major activity using the Assessing Student Perspective of Engagement in Class Tool (ASPECT) survey but did not find a correlation between NOS and activity engagement. Of the three activities, we found the highest engagement with agar art, especially in the CURE developer class. Interviewed students in all classes described agar art as a fun, relevant, and low-stakes assignment. This work contributes to the evidence supporting agar art as a curricular tool, especially in ways that can add research to classrooms in and beyond the research university. 
    more » « less
  4. Course-Based Undergraduate Research Experiences (CUREs) have been shown to provide students with a variety of learning benefits including better conceptual understanding, improved critical thinking and data literacy skills, and increased interest in pursuing scientific careers. Additionally, CUREs provide students with opportunities to participate in authentic research experiences that have a broader impact outside of the classroom. Despite the numerous benefits, the field of astronomy has lagged behind disciplines like biology and chemistry when it comes to including CUREs in the curriculum. Not limited to astronomy, however, is the lack of research opportunities and courses offered to students enrolled in undergraduate degree programs online. In the Fall of 2020, Arizona State University (ASU) introduced the nation’s first online bachelor’s degree program in astronomy and planetary sciences (APS). To make research accessible to a more diverse population of learners, it is imperative that students in this program have access to the same opportunities to participate in authentic research as those in the parallel in-person program. In this work, we describe the development, implementation, and assessment of a fully online CURE for astronomy majors as part of the APS program. We conducted a mixed methods analysis consisting of a Likert style survey administered pre- and postcourse as well as student interviews at the conclusion of the semester. Survey results from the course’s first two offerings (N ¼ 24) indicated that students’ research self-efficacy and science identity both improved. An exoplanet-specific multiple-choice assessment (N ¼ 26) showed statistically significant improvements in conceptual understanding postcourse. Additionally, student interview (N ¼ 11) responses relayed that students felt a stronger sense of belonging to both ASU and the larger astronomy community after participation in the course. The results from this study are encouraging and suggest that student participation in this online CURE led to similar improvements across a variety of outcomes previously identified in studies of in-person CUREs spanning multiple disciplines. 
    more » « less
  5. Provost, Joseph; Cornely, Kathleen; Parente, Amy; Peterson, Celeste; Springer, Amy (Ed.)
    Abstract College science programs exhibit high rates of student attrition, especially among Students of Color, women, members of the LGBTQ+ community, and those with disabilities. Many of the reasons students choose to leave or feel pushed out of science can be mitigated through participation in faculty-mentored research. However, faculty resources are limited, and not every student has access to faculty mentoring due to systemic or structural barriers. By bringing authentic scientific research into the classroom context, course-based undergraduate research experiences (CUREs) expand the number of students who participate in research and provide benefits similar to faculty-mentored research. Instructors also benefit from teaching CUREs. Using a systematic review of 14 manuscripts concerning the Malate Dehydrogenase CUREs Community (MCC) and malate dehydrogenase (MDH) CUREs, we demonstrate that CUREs can be implemented flexibly, are authentic research experiences, generate new scientific discoveries, and improve student outcomes. Additionally, CURE communities offer substantial advantages to faculty wishing to implement CUREs. 
    more » « less