skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Development and assessment of a course-based undergraduate research experience for online astronomy majors
Course-Based Undergraduate Research Experiences (CUREs) have been shown to provide students with a variety of learning benefits including better conceptual understanding, improved critical thinking and data literacy skills, and increased interest in pursuing scientific careers. Additionally, CUREs provide students with opportunities to participate in authentic research experiences that have a broader impact outside of the classroom. Despite the numerous benefits, the field of astronomy has lagged behind disciplines like biology and chemistry when it comes to including CUREs in the curriculum. Not limited to astronomy, however, is the lack of research opportunities and courses offered to students enrolled in undergraduate degree programs online. In the Fall of 2020, Arizona State University (ASU) introduced the nation’s first online bachelor’s degree program in astronomy and planetary sciences (APS). To make research accessible to a more diverse population of learners, it is imperative that students in this program have access to the same opportunities to participate in authentic research as those in the parallel in-person program. In this work, we describe the development, implementation, and assessment of a fully online CURE for astronomy majors as part of the APS program. We conducted a mixed methods analysis consisting of a Likert style survey administered pre- and postcourse as well as student interviews at the conclusion of the semester. Survey results from the course’s first two offerings (N ¼ 24) indicated that students’ research self-efficacy and science identity both improved. An exoplanet-specific multiple-choice assessment (N ¼ 26) showed statistically significant improvements in conceptual understanding postcourse. Additionally, student interview (N ¼ 11) responses relayed that students felt a stronger sense of belonging to both ASU and the larger astronomy community after participation in the course. The results from this study are encouraging and suggest that student participation in this online CURE led to similar improvements across a variety of outcomes previously identified in studies of in-person CUREs spanning multiple disciplines.  more » « less
Award ID(s):
2121225
PAR ID:
10543517
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
PRPER
Date Published:
Journal Name:
Physical Review Physics Education Research
Volume:
19
Issue:
2
ISSN:
2469-9896
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Provost, Joseph; Cornely, Kathleen; Parente, Amy; Peterson, Celeste; Springer, Amy (Ed.)
    Abstract College science programs exhibit high rates of student attrition, especially among Students of Color, women, members of the LGBTQ+ community, and those with disabilities. Many of the reasons students choose to leave or feel pushed out of science can be mitigated through participation in faculty-mentored research. However, faculty resources are limited, and not every student has access to faculty mentoring due to systemic or structural barriers. By bringing authentic scientific research into the classroom context, course-based undergraduate research experiences (CUREs) expand the number of students who participate in research and provide benefits similar to faculty-mentored research. Instructors also benefit from teaching CUREs. Using a systematic review of 14 manuscripts concerning the Malate Dehydrogenase CUREs Community (MCC) and malate dehydrogenase (MDH) CUREs, we demonstrate that CUREs can be implemented flexibly, are authentic research experiences, generate new scientific discoveries, and improve student outcomes. Additionally, CURE communities offer substantial advantages to faculty wishing to implement CUREs. 
    more » « less
  2. Dr. Alice Suroviec (Ed.)
    Approaches to student-centered active learning have evolved. The progression in course-design has led to the development of new learning paradigms such as collaborative, problem based, and project-based learning. Course-based undergraduate research experiences (CUREs) are a learning pedagogy that infuses research experiences within the curriculum. This method of instruction increases opportunities for students to participate in more authentic education experiences and is especially beneficial in the science education pathway. CUREs encourage students to be autonomous and emphasize teamwork. Our research proposes methodologies that can maximize student performance, particularly benefiting underrepresented and underprepared female students. Pre- and post- assessments of a CURE classroom were administered to gauge student engagement and success in a General Chemistry course. Specifically, our research focuses on female engagement in CURE projects and overall success and retention rates to test if the teaching methods will support increased gender equity in STEM. 
    more » « less
  3. Marshall, Pamela Ann (Ed.)
    ABSTRACT The initial phase of the COVID-19 pandemic changed the nature of course delivery from largely in-person to exclusively remote, thus disrupting the well-established pedagogy of the Genomics Education Partnership (GEP; https://www.thegep.org ). However, our web-based research adapted well to the remote learning environment. As usual, students who engaged in the GEP’s Course-based Undergraduate Research Experience (CURE) received digital projects based on genetic information within assembled Drosophila genomes. Adaptations for remote implementation included moving new member faculty training and peer Teaching Assistant office hours from in-person to online. Surprisingly, our faculty membership significantly increased and, hence, the number of supported students. Furthermore, despite the mostly virtual instruction of the 2020–2021 academic year, there was no significant decline in student learning nor attitudes. Based on successfully expanding the GEP CURE within a virtual learning environment, we provide four strategic lessons we infer toward democratizing science education. First, it appears that increasing access to scientific research and professional development opportunities by supporting virtual, cost-free attendance at national conferences attracts more faculty members to educational initiatives. Second, we observed that transitioning new member training to an online platform removed geographical barriers, reducing time and travel demands, and increased access for diverse faculty to join. Third, developing a Virtual Teaching Assistant program increased the availability of peer support, thereby improving the opportunities for student success. Finally, increasing access to web-based technology is critical for providing equitable opportunities for marginalized students to fully participate in research courses. Online CUREs have great potential for democratizing science education. 
    more » « less
  4. Course-based Undergraduate Research Experiences (CUREs) are an increasingly utilized model for exposing students to research. The lack of robust assessments is a major hurdle to wider adoption of CUREs. The Coronavirus Infectious Disease 2019 (COVID-19) pandemic necessitated a drastic shift of in-person courses to the online format. Using the Participant Perception Indicator (PPI) survey, we measured students’ self-reported changes in learning from such a biochemistry course at a large university in south Florida based on the Biochemistry Authentic Scientific Inquiry Lab (BASIL) model. By doing this, we were able to better understand the student-benefits of CUREs and how these benefits are affected by changes in learning modalities between two relevant semesters, i.e., winter and summer of 2020. Anticipated learning outcomes (ALOs) help partially fill the gap left by the loss of physical interaction in experimental procedures. Our analysis indicated that students learned more through bioinformatic experiments compared to their wet-lab counterparts. Using pre- and post- surveys, students reported that their experience and confidence gains lagged behind their knowledge gain of technique-based skills. Students are not as confident in their understanding of techniques when unable to perform those in the physical laboratory. Thus, despite extensive pursuit of the purpose and protocols of the experiments and techniques, neither their experience nor their confidence was on par with their knowledge. This study is one of the first examples demonstrating a quantitative student-learning assessment of a CURE in the science, technology, engineering, and mathematics (STEM) disciplines. The novel assessment strategies targeted to identify gaps in learning mastery could facilitate the adoption of CUREs, fostering opportunities for all undergraduate students to vital laboratory research experiences in STEM. 
    more » « less
  5. Advancement of the scientific enterprise relies on individuals conducting research in an ethical and responsible manner. Educating emergent scholars in the principles of ethics/responsible conduct of research (E/RCR) is therefore critical to ensuring such advancement. The recent impetus to include authentic research opportunities as part of the undergraduate curriculum, via course-based undergraduate research experiences (CUREs), has been shown to increase cognitive and noncognitive student outcomes. Because of these important benefits, CUREs are becoming more common and often constitute the first research experience for many students. However, despite the importance of E/RCR in the research process, we know of few efforts to incorporate E/RCR education into CUREs. The Ethics Network for Course-based Opportunities in Undergraduate Research (ENCOUR) was created to address this concern and promote the integration of E/RCR within CUREs in the biological sciences and related disciplines. During the inaugural ENCOUR meeting, a four-pronged approach was used to develop guidelines for the effective integration of E/RCR in CUREs. This approach included: 1) defining appropriate student learning objectives; 2) identifying relevant curriculum; 3) identifying relevant assessments; and 4) defining key aspects of professional development for CURE facilitators. Meeting outcomes, including the aforementioned E/RCR guidelines, are described herein. 
    more » « less