skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Watching a hydroperoxyalkyl radical (•QOOH) dissociate
A prototypical hydroperoxyalkyl radical (•QOOH) intermediate, transiently formed in the oxidation of volatile organic compounds, was directly observed through its infrared fingerprint and energy-dependent unimolecular decay to hydroxyl radical and cyclic ether products. Direct time-domain measurements of •QOOH unimolecular dissociation rates over a wide range of energies were found to be in accord with those predicted theoretically using state-of-the-art electronic structure characterizations of the transition state barrier region. Unimolecular decay was enhanced by substantial heavy-atom tunneling involving O-O elongation and C-C-O angle contraction along the reaction pathway. Master equation modeling yielded a fully a priori prediction of the pressure-dependent thermal unimolecular dissociation rates for the •QOOH intermediate—again increased by heavy-atom tunneling—which are required for global models of atmospheric and combustion chemistry.  more » « less
Award ID(s):
1955068
PAR ID:
10284549
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
American Association for the Advancement of Science (AAAS)
Date Published:
Journal Name:
Science
Volume:
373
Issue:
6555
ISSN:
0036-8075
Page Range / eLocation ID:
p. 679-682
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The oxidation of cycloalkanes is important in the combustion of transportation fuels and in atmospheric secondary organic aerosol formation. A transient carbon-centered radical intermediate (•QOOH) in the oxidation of cyclohexane is identified through its infrared fingerprint and time- and energy-resolved unimolecular dissociation dynamics to hydroxyl (OH) radical and bicyclic ether products. Although the cyclohexyl ring structure leads to three nearly degenerate •QOOH isomers (β-, γ-, and δ-QOOH), their transition state (TS) barriers to OH products are predicted to differ considerably. Selective characterization of the β-QOOH isomer is achieved at excitation energies associated with the lowest TS barrier, resulting in rapid unimolecular decay to OH products that are detected. A benchmarking approach is employed for the calculation of high-accuracy stationary point energies, in particular TS barriers, for cyclohexane oxidation (C6H11O2), building on higher-level reference calculations for the smaller ethane oxidation (C2H5O2) system. The isomer-specific characterization of β-QOOH is validated by comparison of experimental OH product appearance rates with computed statistical microcanonical rates, including significant heavy-atom tunneling, at energies in the vicinity of the TS barrier. Master-equation modeling is utilized to extend the results to thermal unimolecular decay rate constants at temperatures and pressures relevant to cyclohexane combustion. 
    more » « less
  2. Hydroperoxyalkyl radicals (˙QOOH) are transient intermediates in the atmospheric oxidation of volatile organic compounds and combustion of hydrocarbon fuels in low temperature (<1000 K) environments. The carbon-centered ˙QOOH radicals are a critical juncture in the oxidation mechanism, but have generally eluded direct experimental observation of their structure, stability, and dissociation dynamics. Recently, this laboratory demonstrated that a prototypical ˙QOOH radical [˙CH 2 (CH 3 ) 2 COOH] can be synthesized by an alternative route, stabilized in a pulsed supersonic expansion, and characterized by its infrared (IR) spectroscopic signature and unimolecular dissociation rate to OH radical and cyclic ether products. The present study focuses on a partially deuterated ˙QOOD analog ˙CH 2 (CH 3 ) 2 COOD, generated in the laboratory by H-atom abstraction from partially deuterated tert -butyl hydroperoxide, (CH 3 ) 3 COOD. IR spectral features associated with jet-cooled and isolated ˙QOOD radicals are observed in the vicinity of the transition state (TS) barrier leading to OD radical and cyclic ether products. The overtone OD stretch (2 ν OD ) of ˙QOOD is identified by IR action spectroscopy with UV laser-induced fluorescence detection of OD products. Direct time-domain measurement of the unimolecular dissociation rate for ˙QOOD (2 ν OD ) extends prior rate measurements for ˙QOOH. Partial deuteration results in a small increase in the TS barrier predicted by high level electronic structure calculations due to changes in zero-point energies; the imaginary frequency is unchanged. Comparison of the unimolecular decay rates obtained experimentally with those predicted theoretically for both ˙QOOH and ˙QOOD confirm that unimolecular decay is enhanced by heavy-atom tunneling involving simultaneous O–O bond elongation and C–C–O angle contraction along the reaction pathway. 
    more » « less
  3. Unimolecular decay of the formaldehyde oxide (CH2OO) Criegee intermediate proceeds via a 1,3 ring-closure pathway to dioxirane and subsequent rearrangement and/or dissociation to many products including hydroxyl (OH) radicals that are detected. Vibrational activation of jet-cooled CH2OO with two quanta of CH stretch (17-18 kcal mol-1) leads to unimolecular decay at an energy significantly below the transition state barrier of 19.46  0.25 kcal mol-1, refined utilizing a high-level electronic structure method HEAT-345(Q)Λ. The observed unimolecular decay rate of 1.6 +/- 0.4 x 106 s-1 is two orders of magnitude slower than that predicted by statistical unimolecular reaction theory using several different models for quantum mechanical tunneling. The nonstatistical behavior originates from excitation of a CH stretch vibration that is orthogonal to the heavy atom motions along the reaction coordinate and slow intramolecular vibrational energy redistribution due to the sparse density of states. 
    more » « less
  4. Infrared (IR) action spectroscopy is utilized to characterize carbon-centered hydroperoxy-cyclohexyl radicals (·QOOH) transiently formed in cyclohexane oxidation. The oxidation pathway leads to three nearly degenerate ·QOOH isomers, β-, γ-, and δ-QOOH, which are generated in the laboratory by H-atom abstraction from the corresponding ring sites of the cyclohexyl hydroperoxide (CHHP) precursor. The IR spectral features of jet-cooled and stabilized ·QOOH radicals are observed from 3590 to 7010 cm−1 (∼10–20 kcal mol−1) at energies in the vicinity of the transition state (TS) barrier leading to OH radicals that are detected by ultraviolet laser-induced fluorescence. The experimental approach affords selective detection of β-QOOH, arising from its significantly lower TS barrier to OH products compared to γ and δ isomers, which results in rapid unimolecular decay and near unity branching to OH products. The observed IR spectrum of β-QOOH includes fundamental and overtone OH stretch transitions, overtone CH stretch transitions, and combination bands involving OH or CH stretch with lower frequency modes. The assignment of β-QOOH spectral features is guided by anharmonic frequencies and intensities computed using second-order vibrational perturbation theory. The overtone OH stretch (2νOH) of β-QOOH is shifted only a few wavenumbers from that observed for the CHHP precursor, yet they are readily distinguished by their prompt vs slow dissociation rates to OH products. 
    more » « less
  5. The dissociative photoionization processes of methyl hydroperoxide (CH 3 OOH) have been studied by imaging Photoelectron Photoion Coincidence (iPEPICO) spectroscopy experiments as well as quantum-chemical and statistical rate calculations. Energy selected CH 3 OOH + ions dissociate into CH 2 OOH + , HCO + , CH 3 + , and H 3 O + ions in the 11.4–14.0 eV photon energy range. The lowest-energy dissociation channel is the formation of the cation of the smallest “QOOH” radical, CH 2 OOH + . An extended RRKM model fitted to the experimental data yields a 0 K appearance energy of 11.647 ± 0.005 eV for the CH 2 OOH + ion, and a 74.2 ± 2.6 kJ mol –1 mixed experimental-theoretical 0 K heat of formation for the CH 2 OOH radical. The proton affinity of the Criegee intermediate, CH 2 OO, was also obtained from the heat of formation of CH 2 OOH + (792.8 ± 0.9 kJ mol –1 ) to be 847.7 ± 1.1 kJ mol –1 , reducing the uncertainty of the previously available computational value by a factor of 4. RRKM modeling of the complex web of possible rearrangement-dissociation processes were used to model the higher-energy fragmentation. Supported by Born–Oppenheimer molecular dynamics simulations, we found that the HCO + fragment ion is produced through a roaming transition state followed by a low barrier. H 3 O + is formed in a consecutive process from the CH 2 OOH + fragment ion, while direct C–O fission of the molecular ion leads to the methyl cation. 
    more » « less