The valence photoionization of light and deuterated methanol dimers was studied by imaging photoelectron photoion coincidence spectroscopy in the 10.00–10.35 eV photon energy range. Methanol clusters were generated in a rich methanol beam in nitrogen after expansion into vacuum. They generally photoionize dissociatively to protonated methanol cluster cations, (CH 3 OH) n H + . However, the stable dimer parent ion (CH 3 OH) 2 + is readily detected below the dissociation threshold to yield the dominant CH 3 OH 2 + fragment ion. In addition to protonated methanol, we could also detect the water- and methyl-loss fragment ions of the methanol dimer cation for the first time. These newly revealed fragmentation channels are slow and cannot compete with protonated methanol cation formation at higher internal energies. In fact, the water- and methyl-loss fragment ions appear together and disappear at a ca. 150 meV higher energy in the breakdown diagram. Experiments with selectively deuterated methanol samples showed H scrambling involving two hydroxyl and one methyl hydrogens prior to protonated methanol formation. These insights guided the potential energy surface exploration to rationalize the dissociative photoionization mechanism. The potential energy surface was further validated by a statistical model including isotope effects to fit the experiment for the light and the perdeuterated methanol dimers simultaneously. The (CH 3 OH) 2 + parent ion dissociates via five parallel channels at low internal energies. The loss of both CH 2 OH and CH 3 O neutral fragments leads to protonated methanol. However, the latter, direct dissociation channel is energetically forbidden at low energies. Instead, an isomerization transition state is followed by proton transfer from a methyl group, which leads to the CH 3 (H)OH + ⋯CH 2 OH ion, the precursor to the CH 2 OH-, H 2 O-, and CH 3 -loss fragments after further isomerization steps, in part by a roaming mechanism. Water loss yields the ethanol cation, and two paths are proposed to account for m/z 49 fragment ions after CH 3 loss. The roaming pathways are quickly outcompeted by hydrogen bond breaking to yield CH 3 OH 2 + , which explains the dominance of the protonated methanol fragment ion in the mass spectrum.
more »
« less
Thermochemistry of the Smallest QOOH Radical from the Roaming Fragmentation of Energy Selected Methyl Hydroperoxide Ions
The dissociative photoionization processes of methyl hydroperoxide (CH 3 OOH) have been studied by imaging Photoelectron Photoion Coincidence (iPEPICO) spectroscopy experiments as well as quantum-chemical and statistical rate calculations. Energy selected CH 3 OOH + ions dissociate into CH 2 OOH + , HCO + , CH 3 + , and H 3 O + ions in the 11.4–14.0 eV photon energy range. The lowest-energy dissociation channel is the formation of the cation of the smallest “QOOH” radical, CH 2 OOH + . An extended RRKM model fitted to the experimental data yields a 0 K appearance energy of 11.647 ± 0.005 eV for the CH 2 OOH + ion, and a 74.2 ± 2.6 kJ mol –1 mixed experimental-theoretical 0 K heat of formation for the CH 2 OOH radical. The proton affinity of the Criegee intermediate, CH 2 OO, was also obtained from the heat of formation of CH 2 OOH + (792.8 ± 0.9 kJ mol –1 ) to be 847.7 ± 1.1 kJ mol –1 , reducing the uncertainty of the previously available computational value by a factor of 4. RRKM modeling of the complex web of possible rearrangement-dissociation processes were used to model the higher-energy fragmentation. Supported by Born–Oppenheimer molecular dynamics simulations, we found that the HCO + fragment ion is produced through a roaming transition state followed by a low barrier. H 3 O + is formed in a consecutive process from the CH 2 OOH + fragment ion, while direct C–O fission of the molecular ion leads to the methyl cation.
more »
« less
- Award ID(s):
- 1665464
- PAR ID:
- 10066639
- Date Published:
- Journal Name:
- Physical Chemistry Chemical Physics
- ISSN:
- 1463-9076
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Coincidence ion pair production (cipp) spectra of F 2 were recorded on the DELICIOUS III coincidence spectrometer in the one-photon excitation region of 125 975–126 210 cm −1 . The F + + F − signal shows a rotational band head structure, corresponding to F 2 Rydberg states crossing over to the ion pair production surface. Spectral simulation and quantum defect analysis allowed the characterization of five new molecular Rydberg states (F 2 **): one Π and four Σ states. The lowest-energy Rydberg state spectrum observed ( T 0 = 125 999 cm −1 ) lacked some of the predicted rotational structure, which allowed an accurate determination of the ion pair production threshold of 15.6229 4 ± 0.0004 3 eV. Using the well-known atomic fluorine ionization energy and electron affinity, this number leads to a ground state F–F dissociation energy of 1.6012 9 ± 0.0004 4 eV. Photoelectron photoion coincidence (PEPICO) experiments were also carried out on F 2 and the dissociative photoionization threshold to F + + F was determined as 19.0242 ± 0.0006 eV. Using the atomic fluorine ionization energy, this can be converted to an F 2 dissociation energy of 1.6013 2 ± 0.0006 2 eV, further confirming the cipp-derived value above. Because the two experiments were independently energy-calibrated, they can be averaged to 1.6013 0 ± 0.0003 6 eV and this value can be used to derive the fluorine atom's 0 K heat of formation as 77.25 1 ± 0.01 7 kJ mol −1 . This latter is in excellent agreement with the latest Active Thermochemical Table (ATcT) value but improves its accuracy by almost a factor of three.more » « less
-
ABSTRACT: We report the generation and spectroscopic study of hydrogen-rich DNA tetranucleotide cation radicals (GATC+2H)+• and (AGTC+2H)+•. The radicals were generated in the gas phase by one-electron reduction of the respective dications (GATC +2H)2+ and (AGTC+2H)2+ and characterized by collision-induced dissociation and photodissociation tandem mass spectrometry and UV−vis photodissociation action spectroscopy. Among several absorption bands observed for (GATC+2H)+•, the bands at 340 and 450 nm were assigned to radical chromophores. Timedependent density functional theory calculations including vibronic transitions in the visible region of the spectrum were used to provide theoretical absorption spectra of several low-energy tetranucleotide tautomers having cytosine-, adenine-, and thymine- based radical chromophores that did not match the experimental spectrum. Instead, the calculations indicated the formation of a new isomer with the 7,8-H-dihydroguanine cation radical moiety. The isomerization involved hydrogen migration from the cytosine N-3−H radical to the C-8 position in N-7-protonated guanine that was calculated to be 87 kJ mol−1 exothermic and had a low-energy transition state. Although the hydrogen migration was facilitated by the spatial proximity of the guanine and cytosine bases in the low-energy (GATC+2H)+• intermediate formed by electron transfer, the reaction was calculated to have a large negative activation entropy. Rice−Ramsperger−Kassel−Marcus (RRKM) and transition state theory kinetic analysis indicated that the isomerization occurred rapidly in hot cation radicals produced by electron transfer with the population-weighed rate constant of k = 8.9 × 103 s−1. The isomerization was calculated to be too slow to proceed on the experimental time scale in thermal cation radicals at 310 K.more » « less
-
Acetaldehyde cations (CH 3 CHO + ) were prepared using single-photon vacuum ultraviolet ionization of CH 3 CHO in a molecular beam and the fragmentation dynamics explored over the photolysis wavelength range 390–210 nm using velocity-map ion imaging and photofragment yield (PHOFY) spectroscopy. Four fragmentation channels are characterized: CH 3 CHO + → C 2 H 3 O + + H (I), CH 3 CHO + → HCO + + CH 3 (II), CH 3 CHO + → CH 3 + + HCO (III), CH 3 CHO + → CH 4 + + CO (IV). Channels (I), (II), and (IV) are observed across the full photolysis wavelength range while channel (III) is observed only at λ < 317 nm. Maximum fragment ion yields are obtained at ∼250 nm. Ion images were recorded over the range 316–228 nm, which corresponds to initial excitation to the B̃ 2 A′ and C̃ 2 A′ states of CH 3 CHO + . The speed and angular distributions are distinctly different for each detected ion and show evidence of both statistical and dynamical fragmentation pathways. At longer wavelengths, fragmentation via channel (I) leads to modest translational energies ( E T ), consistent with dissociation over a small barrier and production of highly internally excited CH 3 CO + . Additional components with E INT greater than the CH 3 CO + secondary dissociation threshold appear at shorter wavelengths and are assigned to fragmentation products of vinyl alcohol cation or oxirane cation formed by isomerization of energized CH 3 CHO + . The E T distribution observed for channel (III) products peaks at zero but is notably colder than that predicted by phase space theory, particularly at longer photolysis wavelengths. The colder-than-statistical E T distributions are attributed to contributions from secondary fragmentation of energized CH 3 CO + formed via channel (I), which are attenuated by CH 3 CHO + isomerization at shorter wavelengths. Fragmentation via channels (II) and (IV) results in qualitatively similar outcomes, with evidence of isotropic statistical components at low- E T and anisotropic components due to excited state dynamics at higher E T .more » « less
-
The photodissociation dynamics of acetone has been investigated using velocity-map ion imaging and photofragment excitation (PHOFEX) spectroscopy across a range of wavelengths spanning the first absorption band (236–308 nm). The radical products of the Norrish Type I dissociation, methyl and acetyl, as well as the molecular product ketene have been detected by single-photon VUV ionization at 118 nm. Ketene appears to be formed with non-negligible yield at all wavelengths, with a maximum value of Φ ≈ 0.3 at 280 nm. The modest translational energy release is inconsistent with dissociation over high barriers on the S 0 surface, and ketene formation is tentatively assigned to a roaming pathway involving frustrated dissociation to the radical products. Fast-moving radical products are detected at λ ≤ 305 nm with total translational energy distributions that extend to the energetic limit, consistent with dissociation occurring near-exclusively on the T 1 surface following intersystem crossing. At energies below the T 1 barrier a statistical component indicative of S 0 dissociation is observed, although dissociation via the S 1 /S 0 conical intersection is absent at shorter wavelengths, in contrast to acetaldehyde. The methyl radical yield is enhanced over that of acetyl in PHOFEX spectra at λ ≤ 260 nm due to the onset of secondary dissociation of internally excited acetyl radicals. Time-resolved ion imaging experiments using picosecond duration pulses at 266 nm find an appearance time constant of τ = 1490 ± 140 ps for CH 3 radicals formed on T 1 . The associated rate is representative of S 1 → T 1 intersystem crossing. At 284 nm, CH 3 is formed on T 1 with two distinct timescales: a fast <10 ns component is accompanied by a slower component with τ = 42 ± 7 ns. A two-step mechanism involving fast internal conversion, followed by slower intersystem crossing (S 1 → S 0 → T 1 ) is proposed to explain the slow component.more » « less