skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Planning High-Level Paths in Hostile, Dynamic, and Uncertain Environments
This paper introduces and studies a graph-based variant of the path planning problem arising in hostile environments. We consider a setting where an agent (e.g. a robot) must reach a given destination while avoiding being intercepted by probabilistic entities which exist in the graph with a given probability and move according to a probabilistic motion pattern known a priori. Given a goal vertex and a deadline to reach it, the agent must compute the path to the goal that maximizes its chances of survival. We study the computational complexity of the problem, and present two algorithms for computing high quality solutions in the general case: an exact algorithm based on Mixed-Integer Nonlinear Programming, working well in instances of moderate size, and a pseudo-polynomial time heuristic algorithm allowing to solve large scale problems in reasonable time. We also consider the two limit cases where the agent can survive with probability 0 or 1, and provide specialized algorithms to detect these kinds of situations more efficiently.  more » « less
Award ID(s):
1830497
PAR ID:
10284583
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Journal of Artificial Intelligence Research
Volume:
69
ISSN:
1076-9757
Page Range / eLocation ID:
297 to 342
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Tauman_Kalai, Yael (Ed.)
    Consider an agent exploring an unknown graph in search of some goal state. As it walks around the graph, it learns the nodes and their neighbors. The agent only knows where the goal state is when it reaches it. How do we reach this goal while moving only a small distance? This problem seems hopeless, even on trees of bounded degree, unless we give the agent some help. This setting with "help" often arises in exploring large search spaces (e.g., huge game trees) where we assume access to some score/quality function for each node, which we use to guide us towards the goal. In our case, we assume the help comes in the form of distance predictions: each node v provides a prediction f(v) of its distance to the goal vertex. Naturally if these predictions are correct, we can reach the goal along a shortest path. What if the predictions are unreliable and some of them are erroneous? Can we get an algorithm whose performance relates to the error of the predictions? In this work, we consider the problem on trees and give deterministic algorithms whose total movement cost is only O(OPT + Δ ⋅ ERR), where OPT is the distance from the start to the goal vertex, Δ the maximum degree, and the ERR is the total number of vertices whose predictions are erroneous. We show this guarantee is optimal. We then consider a "planning" version of the problem where the graph and predictions are known at the beginning, so the agent can use this global information to devise a search strategy of low cost. For this planning version, we go beyond trees and give an algorithms which gets good performance on (weighted) graphs with bounded doubling dimension. 
    more » « less
  2. null (Ed.)
    Abstract A novel, exact algorithm is presented to solve the path planning problem that involves finding the shortest collision-free path from a start to a goal point in a two-dimensional environment containing convex and non-convex obstacles. The proposed algorithm, which is called the shortest possible path (SPP) algorithm, constructs a network of lines connecting the vertices of the obstacles and the locations of the start and goal points which is smaller than the network generated by the visibility graph. Then it finds the shortest path from start to goal point within this network. The SPP algorithm generates a safe, smooth and obstacle-free path that has a desired distance from each obstacle. This algorithm is designed for environments that are populated sparsely with convex and nonconvex polygonal obstacles. It has the capability of eliminating some of the polygons that do not play any role in constructing the optimal path. It is proven that the SPP algorithm can find the optimal path in O(nn r2 ) time, where n is the number of vertices of all polygons and n ̓ is the number of vertices that are considered in constructing the path network (n ̓ ≤ n). The performance of the algorithm is evaluated relative to three major classes of algorithms: heuristic, probabilistic, and classic. Different benchmark scenarios are used to evaluate the performance of the algorithm relative to the first two classes of algorithms: GAMOPP (genetic algorithm for multi-objective path planning), a representative heuristic algorithm, as well as RRT (rapidly-exploring random tree) and PRM (probabilistic road map), two well-known probabilistic algorithms. Time complexity is known for classic algorithms, so the presented algorithm is compared analytically. 
    more » « less
  3. null (Ed.)
    We introduce a new skill-discovery algorithm that builds a discrete graph representation of large continuous MDPs, where nodes correspond to skill subgoals and the edges to skill policies. The agent constructs this graph during an unsupervised training phase where it interleaves discovering skills and planning using them to gain coverage over ever-increasing portions of the state-space. Given a novel goal at test time, the agent plans with the acquired skill graph to reach a nearby state, then switches to learning to reach the goal. We show that the resulting algorithm, Deep Skill Graphs, outperforms both flat and existing hierarchical reinforcement learning methods on four difficult continuous control tasks. 
    more » « less
  4. We introduce a new skill-discovery algorithm that builds a discrete graph representation of large continuous MDPs, where nodes correspond to skill subgoals and the edges to skill policies. The agent constructs this graph during an unsupervised training phase where it interleaves discovering skills and planning using them to gain coverage over ever-increasing portions of the state-space. Given a novel goal at test time, the agent plans with the acquired skill graph to reach a nearby state, then switches to learning to reach the goal. We show that the resulting algorithm, Deep Skill Graphs, outperforms both flat and existing hierarchical reinforcement learning methods on four difficult continuous control tasks. 
    more » « less
  5. Gørtz, Inge Li; Farach-Colton, Martin; Puglisi, Simon J; Herman, Grzegorz (Ed.)
    The k-Detour problem is a basic path-finding problem: given a graph G on n vertices, with specified nodes s and t, and a positive integer k, the goal is to determine if G has an st-path of length exactly dist(s,t) + k, where dist(s,t) is the length of a shortest path from s to t. The k-Detour problem is NP-hard when k is part of the input, so researchers have sought efficient parameterized algorithms for this task, running in f(k)poly(n) time, for f(⋅) as slow-growing as possible. We present faster algorithms for k-Detour in undirected graphs, running in 1.853^k poly(n) randomized and 4.082^kpoly(n) deterministic time. The previous fastest algorithms for this problem took 2.746^k poly(n) randomized and 6.523^k poly(n) deterministic time [Bezáková-Curticapean-Dell-Fomin, ICALP 2017]. Our algorithms use the fact that detecting a path of a given length in an undirected graph is easier if we are promised that the path belongs to what we call a "bipartitioned" subgraph, where the nodes are split into two parts and the path must satisfy constraints on those parts. Previously, this idea was used to obtain the fastest known algorithm for finding paths of length k in undirected graphs [Björklund-Husfeldt-Kaski-Koivisto, JCSS 2017], intuitively by looking for paths of length k in randomly bipartitioned subgraphs. Our algorithms for k-Detour stem from a new application of this idea, which does not involve choosing the bipartitioned subgraphs randomly. Our work has direct implications for the k-Longest Detour problem, another related path-finding problem. In this problem, we are given the same input as in k-Detour, but are now tasked with determining if G has an st-path of length at least dist(s,t)+k. Our results for k-Detour imply that we can solve k-Longest Detour in 3.432^k poly(n) randomized and 16.661^k poly(n) deterministic time. The previous fastest algorithms for this problem took 7.539^k poly(n) randomized and 42.549^k poly(n) deterministic time [Fomin et al., STACS 2022]. 
    more » « less