skip to main content


Title: Characterizing the Effects of Haptic Rendering Parameter Variations on Perceived Kinesthetic Rendering Accuracy
To understand how the realism of a kinesthetic haptic rendering is affected by the accurate selection of the rendering model parameters, we conducted a preliminary user study where subjects compared three real-world objects to their equivalent haptic rendering. The subjects rated the rendering realism as the model parameters were varied about their nominal values. The results suggest that the required accuracy of various haptic rendering parameters is not equally important when considering the perceived realism.  more » « less
Award ID(s):
1830242
NSF-PAR ID:
10284613
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
IEEE
Date Published:
Format(s):
Medium: X
Location:
Montreal, QC, Canada
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    To increase diversity and realism, surface bidirectional scattering distribution functions (BSDFs) are often modelled as consisting of multiple layers, but accurately evaluating layered BSDFs while accounting for all light transport paths is a challenging problem. Recently, Guoet al. [GHZ18] proposed an accurate and general position‐free Monte Carlo method, but this method introduces variance that leads to longer render time compared to non‐stochastic layered models. We improve the previous work by presenting two new sampling strategies,pair‐product samplingandmultiple‐product sampling. Our new methods better take advantage of the layered structure and reduce variance compared to the conventional approach of sequentially sampling one BSDF at a time. Ourpair‐product samplingstrategy importance samples the product of two BSDFs from a pair of adjacent layers. We further generalize this tomultiple‐product sampling, which importance samples the product of a chain of three or more BSDFs. In order to compute these products, we developed a new approximate Gaussian representation of individual layer BSDFs. This representation incorporates spatially varying material properties as parameters so that our techniques can support an arbitrary number of textured layers. Compared to previous Monte Carlo layering approaches, our results demonstrate substantial variance reduction in rendering isotropic layered surfaces.

     
    more » « less
  2. Abstract

    As the number of applications for tactile feedback technology rapidly increases, so too does the need for efficient, flexible, and extensible representations of virtual textures. The previously introduced Single-Pitch Texel rendering algorithm offers designers the ability to produce textures with perceptually wide-band spectral characteristics while requiring very few input parameters. This paper expands on the capabilities of the rendering algorithm. Diverse families of fine textures, with widely varied spectral characteristics, were shown to be rendered reliably using the Texel algorithm. Furthermore, by leveraging an assistive algorithm, subjects were shown to consistently navigate the Texel parameter space in a matching task. Finally, a psychophysical study was conducted to demonstrate the rendering algorithm’s resilience to spectral quantization, further reducing the data required to represent a virtual texture.

     
    more » « less
  3. Despite the large amount of research on kinesthetic haptic devices and haptic effect modeling, there is limited work assessing the perceived realism of kinesthetic model renderings. Identifying the impact of haptic effect parameters in perceived realism can help to inform the required accuracy of kinesthetic renderings. In this work, we model common kinesthetic haptic effects and evaluate the perceived realism of varying model parameters via a user study. Our results suggest that parameter accuracy requirements to achieve realistic ratings vary depending on the specific haptic parameter. 
    more » « less
  4. Computer-graphics engineers and vision scientists want to generate images that reproduce realistic depth-dependent blur. Current rendering algorithms take into account scene geometry, aperture size, and focal distance, and they produce photorealistic imagery as with a high-quality camera. But to create immersive experiences, rendering algorithms should aim instead for perceptual realism. In so doing, they should take into account the significant optical aberrations of the human eye. We developed a method that, by incorporating some of those aberrations, yields displayed images that produce retinal images much closer to the ones that occur in natural viewing. In particular, we create displayed images taking the eye’s chromatic aberration into account. This produces different chromatic effects in the retinal image for objects farther or nearer than current focus. We call the method ChromaBlur. We conducted two experiments that illustrate the benefits of ChromaBlur. One showed that accommodation (eye focusing) is driven quite effectively when ChromaBlur is used and that accommodation is not driven at all when conventional methods are used. The second showed that perceived depth and realism are greater with imagery created by ChromaBlur than in imagery created conventionally. ChromaBlur can be coupled with focus-adjustable lenses and gaze tracking to reproduce the natural relationship between accommodation and blur in HMDs and other immersive devices. It may thereby minimize the adverse effects of vergence-accommodation conflicts. 
    more » « less
  5. Impedance based kinesthetic haptic devices have been a focus of study for many years. Factors such as delay and the dynamics of the device itself affect the stable rendering range of traditional active kinesthetic devices. A parallel hybrid actuation approach, which combines active energy supplying actuators and passive energy absorbing actuators into a single actuator, has recently been experimentally shown to increase the range of stable virtual stiffness a haptic device can achieve when compared to the active component of the actuator alone. This work presents both a stability and rendering range analysis that aims to identify the mechanisms and limitations by which parallel hybrid actuation increases the stable rendering range of virtual stiffness. Increases in actuator stability are analytically and experimentally shown to be linked to the stiffness of the passive actuator. 
    more » « less