The concentration of the stratospheric ozone layer is of great interest to the atmospheric science community, since it is critical in blocking the harmful UV radiation from the sun. Typically, regular weather balloons with Electrochemical Cell (ECC) ozonesondes are used to determine the vertical profile of ozone column concentration within a flight time of ~2 hours, with a limited fraction of the data relevant to the ozone layer. Therefore, it would be ideal if ozonesonde flights can be maintained within the ozone layer (~60,000 to 80,000 ft) to maximize the efficiency in data acquisition, especially considering the rising costs of ozonesonding and high-altitude ballooning. We adapted the vented balloon with altitude-control flight capability from the Nationwide Eclipse Ballooning Program (NEBP) for atmospheric ozonesonding and deployed a commercial ECC ozonesonde payload with this approach from Central Texas during the 2024 total solar eclipse in the hope of (1) field testing the performance and application potential of vented balloons in horizontal ozone layer profiling and (2) monitoring the stratospheric ozone layer during the solar eclipse for an extended period of time. The adapted vent valve successfully lowered the balloon from 71,000 ft to 41,000 ft within minutes and demonstrated promising performance in the field. Unfortunately, unexpected radio communication difficulties were experienced from six hours before the totality to two hours after, leaving the second research objective largely unobtainable.
more »
« less
Detection of stratospheric gravity waves induced by the total solar eclipse of July 2, 2019
Abstract Atmospheric gravity waves generated by an eclipse were first proposed in 1970. Despite numerous efforts since, there has been no definitive evidence for eclipse generated gravity waves in the lower to middle atmosphere. Measuring wave characteristics produced by a definite forcing event such as an eclipse provides crucial knowledge for developing more accurate physical descriptions of gravity waves. These waves are fundamental to the transport of energy and momentum throughout the atmosphere and their parameterization or simulation in numerical models provides increased accuracy to forecasts. Here, we present the findings from a radiosonde field campaign carried out during the total solar eclipse of July 2, 2019 aimed at detecting eclipse-driven gravity waves in the stratosphere. This eclipse was the source of three stratospheric gravity waves. The first wave (eclipse wave #1) was detected 156 min after totality and the other two waves were detected 53 and 62 min after totality (eclipse waves #2 and #3 respectively) using balloon-borne radiosondes. Our results demonstrate both the importance of field campaign design and the limitations of currently accepted balloon-borne analysis techniques for the detection of stratospheric gravity waves.
more »
« less
- Award ID(s):
- 1907207
- PAR ID:
- 10284663
- Date Published:
- Journal Name:
- Scientific Reports
- Volume:
- 10
- Issue:
- 1
- ISSN:
- 2045-2322
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Mid‐Missouri experienced up to 2 min 40 s of totality at around solar noon during the total eclipse of 2017. We conducted the Mid‐Missouri Eclipse Meteorology Experiment to examine land‐atmosphere interactions during the eclipse. Here, research examining the eclipse responses in three contrasting ecosystems (forest, prairie, and soybeans) is described. There was variable cloudiness around first and fourth contacts (i.e., the start and end of partial solar obscuration) at the forest and prairie; however, solar irradiance (K↓) signals during the eclipse were relatively clean. Unfortunately, the eclipse forcing at the soybean field was contaminated by convective activity, which decreasedK↓beginning about an hour before first contact and exposed the field to cold outflow ~30 min before second contact. Turbulence was suppressed during the eclipse at all sites; however, there was also an amplified signal at the soybean field during the passage of a gust front. The standard deviations of the horizontal and vertical wind velocities and friction velocities decreased by ~75% at the forest (aerodynamically rough), and ~60% at the prairie (aerodynamically smooth). The eddy fluxes of energy were highly coherent with the solar forcing with the latent and sensible heat fluxes approaching 0 W/m2and changing in direction, respectively. For the prairie site, we estimated a canopy‐scale time constant for the surface conductance light response of 10 min. Although the eclipse imparted large forcings on surface energy balances, the air temperature response was relatively muted (1.5–2.5 °C decrease) due to the absence of topographic effects and the relatively moist land and atmosphere.more » « less
-
Abstract On 8 April 2024, a total solar eclipse overpassed Texas in the southern portion of the United States. To monitor the impact of the total solar eclipse, a group of students from Texas A&M University–Corpus Christi developed two weather balloon payloads and six ground-based instrument packages using microcontrollers and low-cost sensors. These instrument packages were deployed to six different sites spanning nearly 600 km along the total eclipse path from the Mexican border to North Texas. During the total eclipse, air temperature decreased, and relative humidity increased consistently at all six stations due to the reduction in sensible heating. The dewpoint temperatures decreased at the near surface at all sites likely due to the reduction in evaporation. Five of the six ground stations observed a slight dampening of the wind speed, and two of the six stations recorded significant counterclockwise wind shifts. No consistent pattern was observed in the surface vertical electric field at the six ground stations. The two balloon payloads captured the damping of the visible and ultraviolet (UV) radiation in the upper troposphere and lower stratosphere throughout the event. Though a slight decrease in both temperature and ozone in the lower stratosphere was observed after the totality, it is difficult to determine the impact from the eclipse on the ozone mixing ratio and dynamics in the lower stratosphere from only a few vertical profiles. For the students who participated, this field campaign has provided invaluable experiences in instrumentation, fieldwork, and data collection.more » « less
-
Abstract The Southern Andes, in Patagonia, are a well‐known hotspot of orographic gravity waves (oGWs) during winter when atmospheric conditions, such as temperature, wind speed, and wind direction, favor their generation and propagation. In the summer, oGWs above the mesosphere and oGW‐induced ionospheric perturbations are rarely observed because vertical wave propagation conditions are unfavorable. Nevertheless, when atmospheric conditions deviate significantly from those typical of summer, for example, during a solar eclipse (SE), the atmospheric temperature and wind changes can allow oGWs to reach ionospheric heights. Global Navigation Satellite Systems (GNSS)‐based ionospheric total electron content (TEC) studies of the 2017 North American eclipse showed oGW‐compatible observations near the totality zone around the Rocky Mountains, and it was suggested, but not shown, that these were likely oGWs. In this work, we report, model, and interpret GNSS TEC perturbations observed during the December 14, 2020 total SE in South America. TEC data recorded near the Andes during this total SE are in good agreement with predictions by the SAMI3 ionospheric model until shortly after the passage of the umbra. TEC data after totality can best be explained with the interpretation that the observation of oGWs was favored by the passage of the eclipse over the Andes Mountains.more » « less
-
Abstract. Current climate models have difficulty representing realistic wave–mean flow interactions, partly because the contribution from waves with fine vertical scales is poorly known. There are few direct observations of these waves, and most models have difficulty resolving them. This observational challenge cannot be addressed by satellite or sparse ground-based methods. The Strateole-2 long-duration stratospheric superpressure balloons that float with the horizontal wind on constant-density surfaces provide a unique platform for wave observations across a broad range of spatial and temporal scales. For the first time, balloon-borne Global Navigation Satellite System (GNSS) radio occultation (RO) is used to provide high-vertical-resolution equatorial wave observations. By tracking navigation signal refractive delays from GPS satellites near the horizon, 40–50 temperature profiles were retrieved daily, from balloon flight altitude (∼20 km) down to 6–8 km altitude, forming an orthogonal pattern of observations over a broad area (±400–500 km) surrounding the flight track. The refractivity profiles show an excellent agreement of better than 0.2 % with co-located radiosonde, spaceborne COSMIC-2 RO, and reanalysis products. The 200–500 m vertical resolution and the spatial and temporal continuity of sampling make it possible to extract properties of Kelvin waves and gravity waves with vertical wavelengths as short as 2–3 km. The results illustrate the difference in the Kelvin wave period (20 vs. 16 d) in the Lagrangian versus ground-fixed reference and as much as a 20 % difference in amplitude compared to COSMIC-2, both of which impact estimates of momentum flux. A small dataset from the extra Galileo, GLONASS, and BeiDou constellations demonstrates the feasibility of nearly doubling the sampling density in planned follow-on campaigns when data with full equatorial coverage will contribute to a better estimate of wave forcing on the quasi-biennial oscillation (QBO) and improved QBO representation in models.more » « less
An official website of the United States government

