- Award ID(s):
- 1642644
- Publication Date:
- NSF-PAR ID:
- 10399823
- Journal Name:
- Atmospheric Chemistry and Physics
- Volume:
- 22
- Issue:
- 23
- Page Range or eLocation-ID:
- 15379 to 15402
- ISSN:
- 1680-7324
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract. A novel fiber-optic distributed temperature sensing instrument, the Fiber-optic Laser Operated Atmospheric Temperature Sensor (FLOATS), was developed for continuous in situ profiling of the atmosphere up to 2 km below constant-altitude scientific balloons. The temperature-sensingsystem uses a suspended fiber-optic cable and temperature-dependent scattering of pulsed laser light in the Raman regime to retrieve continuous3 m vertical-resolution profiles at a minimum sampling period of 20 s.FLOATS was designed for operation aboard drifting super-pressure balloons inthe tropical tropopause layer at altitudes around 18 km as part of theStratéole 2 campaign. A short test flight of the system was conductedfrom Laramie, Wyoming, in January 2021 to check the optical, electrical, andmechanical systems at altitude and to validate a four-reference temperaturecalibration procedure with a fiber-optic deployment length of 1170 m. During the 4 h flight aboard a vented balloon, FLOATS retrieved temperatureprofiles during ascent and while at a float altitude of about 19 km. TheFLOATS retrievals provided differences of less than 1.0 ∘Ccompared to a commercial radiosonde aboard the flight payload during ascent.At float altitude, a comparison of optical length and GPS position at thebottom of the fiber-optic revealed little to no curvature in the fiber-opticcable, suggesting that the position of any distributed temperaturemeasurement can be effectively modeled. Comparisons of the distributedmore »
-
Retrospect and prospect of ionospheric weather observed by FORMOSAT-3/COSMIC and FORMOSAT-7/COSMIC-2Abstract FORMOSAT-3/COSMIC (F3/C) constellation of six micro-satellites was launched into the circular low-earth orbit at 800 km altitude with a 72-degree inclination angle on 15 April 2006, uniformly monitoring the ionosphere by the GPS (Global Positioning System) Radio Occultation (RO). Each F3/C satellite is equipped with a TIP (Tiny Ionospheric Photometer) observing 135.6 nm emissions and a TBB (Tri-Band Beacon) for conducting ionospheric tomography. More than 2000 RO profiles per day for the first time allows us globally studying three-dimensional ionospheric electron density structures and formation mechanisms of the equatorial ionization anomaly, middle-latitude trough, Weddell/Okhotsk Sea anomaly, etc. In addition, several new findings, such as plasma caves, plasma depletion bays, etc., have been reported. F3/C electron density profiles together with ground-based GPS total electron contents can be used to monitor, nowcast, and forecast ionospheric space weather. The S4 index of GPS signal scintillations recorded by F3/C is useful for ionospheric irregularities monitoring as well as for positioning, navigation, and communication applications. F3/C was officially decommissioned on 1 May 2020 and replaced by FORMOSAT-7/COSMIC-2 (F7/C2). F7/C2 constellation of six small satellites was launched into the circular low-Earth orbit at 550 km altitude with a 24-degree inclination angle on 25 June 2019. F7/C2 carries anmore »
-
Abstract The Electron Loss and Fields Investigation with a Spatio-Temporal Ambiguity-Resolving option (ELFIN-STAR, or heretoforth simply: ELFIN) mission comprises two identical 3-Unit (3U) CubeSats on a polar (∼93 ∘ inclination), nearly circular, low-Earth (∼450 km altitude) orbit. Launched on September 15, 2018, ELFIN is expected to have a >2.5 year lifetime. Its primary science objective is to resolve the mechanism of storm-time relativistic electron precipitation, for which electromagnetic ion cyclotron (EMIC) waves are a prime candidate. From its ionospheric vantage point, ELFIN uses its unique pitch-angle-resolving capability to determine whether measured relativistic electron pitch-angle and energy spectra within the loss cone bear the characteristic signatures of scattering by EMIC waves or whether such scattering may be due to other processes. Pairing identical ELFIN satellites with slowly-variable along-track separation allows disambiguation of spatial and temporal evolution of the precipitation over minutes-to-tens-of-minutes timescales, faster than the orbit period of a single low-altitude satellite (T orbit ∼ 90 min). Each satellite carries an energetic particle detector for electrons (EPDE) that measures 50 keV to 5 MeV electrons with $\Delta $ Δ E/E < 40% and a fluxgate magnetometer (FGM) on a ∼72 cm boom that measures magnetic field waves (e.g., EMIC waves) in the range from DC tomore »
-
Abstract Observations of temperature and wind velocity in the 30–40-km altitude layer have been sparse since elimination of the standard rocketsonde sounding network in the 1990s. In an effort to extend the vertical range of radiosonde observations into the upper stratosphere, experiments were conducted with a 3-kg balloon at Tsukuba, Japan, on 5 November 2019. Using this relatively inexpensive balloon technology, four radiosondes were launched, with two reaching above 40-km altitude. These profiles were compared with satellite and reanalysis data in the 30–40-km layer, which showed an overall good agreement and an ability of radiosondes to capture shorter vertical-scale variations. The ability to quantify gravity wave parameters from the data is described, with application to wave events detected near 38–40 km. This type of balloon will be deployed extensively in an upcoming intensive observation campaign over the Maritime Continent, which will contribute toward achieving standard radiosonde observations in the 30–40-km altitude range. This system extends the ability to provide information regarding gravity wave and planetary wave activity upward to ∼40 km.
-
This paper presents observations of electromagnetic ion cyclotron (EMIC) waves from multiple data sources during the four Geospace Environment Modeling challenge events in 2013 selected by the Geospace Environment Modeling Quantitative Assessment of Radiation Belt Modeling focus group: 17 and 18 March (stormtime enhancement), 31 May to 2 June (stormtime dropout), 19 and 20 September (nonstorm enhancement), and 23–25 September (nonstorm dropout). Observations include EMIC wave data from the Van Allen Probes, Geostationary Operational Environmental Satellite, and Time History of Events and Macroscale Interactions during Substorms spacecraft in the near-equatorial magnetosphere and from several arrays of ground-based search coil magnetometers worldwide, as well as localized ring current proton precipitation data from low-altitude Polar Operational Environmental Satellite spacecraft. Each of these data sets provides only limited spatial coverage, but their combination shows consistent occurrence patterns and reveals some events that would not be identified as significant using near-equatorial spacecraft alone. Relativistic and ultrarelativistic electron flux observations, phase space density data, and pitch angle distributions based on data from the Relativistic Electron-Proton Telescope and Magnetic Electron Ion Spectrometer instruments on the Van Allen Probes during these events show two cases during which EMIC waves are likely to have played an important rolemore »