Practical, hands-on experience is an essential component of computer science and engineering education, especially in the cybersecurity domain. In this project, we are investigating techniques for improving student learning in such courses, first by developing a new hands-on hardware security course, then by testing the impact of gamification on student learning. The experiments utilize only inexpensive, open-source or freely-available software and hardware, and upon project completion, the modules themselves will also be made freely available online. Improving student learning in this critical area can have a wide-spread positive societal impact as we encourage students to have a security-first, secure-by-design mindset.
more »
« less
Structuring a Comprehensive Software Security Course Around the OWASP Application Security Verification Standard
Lack of security expertise among software practitioners is a problem with many implications. First, there is a deficit of security professionals to meet current needs. Additionally, even practitioners who do not plan to work in security may benefit from an increased understanding of security. The goal of this paper is to aid software engineering educators in designing a comprehensive software security course by sharing an experience running a software security course for the eleventh time. Through all the eleven years of running the software security course, the course objectives have been comprehensive -- ranging from security testing, to secure design and coding, to security requirements to security risk management. For the first time in this eleventh year, a theme of the course assignments was to map vulnerability discovery to the security controls of the Open Web Application Security Project (OWASP) Application Security Verification Standard (ASVS). Based upon student performance on a final exploratory penetration testing project, this mapping may have increased students' depth of understanding of a wider range of security topics. The students efficiently detected 191 unique and verified vulnerabilities of 28 different Common Weakness Enumeration (CWE) types during a three-hour period in the OpenMRS project, an electronic health record application in active use.
more »
« less
- Award ID(s):
- 1909516
- NSF-PAR ID:
- 10284674
- Date Published:
- Journal Name:
- Proceedings of the International Conference on Software Engineering
- Issue:
- Education Track
- ISSN:
- 1819-3781
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Security is a critical aspect in the process of designing, developing, and testing software systems. Due to the increasing need for security-related skills within software systems, there is a growing demand for these skills to be taught in computer science. A series of security modules was developed not only to meet the demand but also to assess the impact of these modules on teaching critical cybersecurity topics in computer science courses. This full paper in the innovative practice category presents the outcomes of six security modules in a freshman-level course at two institutions. The study adopts a Model-Eliciting Activity (MEA) as a project for students to demonstrate an understanding of security concepts. Two experimental studies were conducted: 1) Teaching effectiveness of implementing cyber security modules and MEA projects, and 2) Students’ experiences in conceptual modeling tasks in problem-solving. In measuring the effectiveness of teaching security concepts with the MEA project, students’ performance, attitudes, and interests as well as the instructor’s effectiveness were assessed. For the conceptual modeling tasks in problem-solving, the results of student outcomes were analyzed. After implementing the security modules with the MEA project, students showed a great understanding of cybersecurity concepts and an increased interest in broader computer science concepts. The instructor’s beliefs about teaching, learning, and assessment shifted from teacher-centered to student-centered during their experience with the security modules and MEA project. Although 64.29% of students’ solutions do not seem suitable for real-world implementation, 76.9% of the developed solutions showed a sufficient degree of creativity.more » « less
-
Security is a critical aspect in the design, development, and testing of software systems. Due to the increasing need for security-related skills within software systems and engineering, there is a growing demand for these skills to be taught at the university level. A series of 41 security modules was developed to assess the impact of these modules on teaching critical cyber security topics to students. This paper presents the implementation and outcomes of the first set of six security modules in a Freshman level course. This set consists of five modules presented in lectures as well as a sixth module emphasizing encryption and decryption used as the semester project for the course. Each module is a collection of concepts related to cyber security. The individual cyber security concepts are presented with a general description of a security issue to avoid, sample code with the security issue written in the Java programming language, and a second version of the code with an effective solution. The set of these modules was implemented in Computer Science I during the Fall 2019 semester. Incorporating each of the concepts in these modules into lectures depends on both the topic covered and the approach to resolving the related security issue. Students were introduced to computing concepts related to both the security issue and the appropriate solution to fully grasp the overall concept. After presenting the materials to students, continual review with students is also essential. This reviewal process requires exploring use-cases for the programming mechanisms presented as solutions to the security issues discussed. In addition to the security modules presented in lectures, students were given a hands-on approach to understanding the concepts through Model-Eliciting Activities (MEAs). MEAs are open-ended, problem-solving activities in which groups of three to four students work to solve realistic complex problems in a classroom setting. The semester project related to encryption and decryption was implemented into the course as an MEA. To assess the effectiveness of incorporating security modules with the MEA project into the curriculum of Computer Science I, two sections of the course were used as a control group and a treatment group. The treatment group included the security modules in lectures and the MEA project while the control group did not. To measure the overall effectiveness of incorporating security modules with the MEA project, both the instructor’s effectiveness as well as the student’s attitudes and interest were measured. For instructors, the primary question to address was to what extent do instructors change their attitudes towards student learning and their teaching practices because of the implementation of cyber security modules through MEAs. For students, the primary question to address was how the inclusion of security modules with the MEA project improved their understanding of the course materials and their interests in computer science. After implementing security modules with the MEA project, students showed a better understanding of cyber security concepts and a greater interest in broader computer science concepts. The instructor’s beliefs about teaching, learning, and assessment shifted from teacher-centered to student-centered, during his experience with the security modules and MEA.more » « less
-
Due to the ever-increasing number of security breaches, practitioners are motivated to produce more secure software. In the United States, the White House Office released a memorandum on Executive Order (EO) 14028 that mandates organizations provide self-attestation of the use of secure software development practices. The OpenSSF Scorecard project allows practitioners to measure the use of software security practices automatically. However, little research has been done to determine whether the use of security practices improves package security, particularly which security practices have the biggest impact on security outcomes. The goal of this study is to assist practitioners and researchers in making informed decisions on which security practices to adopt through the development of models between software security practice scores and security vulnerability counts. To that end, we developed five supervised machine learning models for npm and PyPI packages using the OpenSSF Scorecard security practices scores and aggregate security scores as predictors and the number of externally-reported vulnerabilities as a target variable. Our models found that four security practices (Maintained, Code Review, Branch Protection, and Security Policy) were the most important practices influencing vulnerability count. However, we had low R2 (ranging from 9% to 12%) when we tested the models to predict vulnerability counts. Additionally, we observed that the number of reported vulnerabilities increased rather than reduced as the aggregate security score of the packages increased. Both findings indicate that additional factors may influence the package vulnerability count. Other factors, such as the scarcity of vulnerability data, time to implicate security practices vs. time to detect vulnerabilities, and the need for more adequate scripts to detect security practices, may impede the data-driven studies to indicate that practice can aid in reducing externally-reported vulnerabilities. We suggest that vulnerability count and security score data be refined so that these measures can be used to provide actionable guidance on security practices.more » « less
-
Context: Applying vulnerability detection techniques is one of many tasks using the limited resources of a software project. Objective: The goal of this research is to assist managers and other decision- makers in making informed choices about the use of software vulnerability detection techniques through an empirical study of the efficiency and effectiveness of four techniques on a Java-based web application. Method: We apply four different categories of vulnerability detection techniques – systematic manual penetration testing (SMPT), exploratory manual penetration testing (EMPT), dynamic application security testing (DAST), and static application security testing (SAST) – to an open-source medical records system. Results: We found the most vulnerabilities using SAST. However, EMPT found more severe vulnerabilities. With each technique, we found unique vulnerabilities not found using the other techniques. The efficiency of manual techniques (EMPT, SMPT) was comparable to or better than the efficiency of automated techniques (DAST, SAST) in terms of Vulnerabilities per Hour (VpH). Conclusions: The vulnerability detection technique practitioners should select may vary based on the goals and available resources of the project. If the goal of an organization is to find “all” vulnerabilities in a project, they need to use as many techniques as their resources allow.more » « less