First-generation (FG) and/or low-income (LI) engineering student populations are of particular interest in engineering education. However, these populations are not defined in a consistent manner across the literature or amongst stakeholders. The intersectional identities of these groups have also not been fully explored in most quantitative-based engineering education research. This research paper aims to answer the following three research questions: (RQ1) How do students’ demographic characteristics and college experiences differ depending on levels of parent educational attainment (which forms the basis of first-generation definitions) and family income? (RQ2) How do ‘first-generation’ and ‘low-income’ definitions impact results comparing to their continuing-generation and higher-income peers? (RQ3) How does considering first-generation and low-income identities through an intersectional lens deepen insight into the experiences of first-generation and low-income groups? Data were drawn from a nationally representative survey of engineering juniors and seniors (n = 6197 from 27 U.S. institutions). Statistical analyses were conducted to evaluate respondent differences in demographics (underrepresented racial/ethnic minority (URM), women, URM women), college experiences (internships/co-ops, having a job, conducting research, and study abroad), and engineering task self-efficacy (ETSE), based on various definitions of ‘first generation’ and ‘low income’ depending on levels of parental educational attainment and self-reported family income. Ourmore »
Internship Prevalence and Factors Related to Participation
The value of internship experiences for engineering students is widely discussed in the literature. With this analysis, we seek to contribute knowledge addressing 1) the prevalence of internship experiences amongst engineering students drawn from a large, multi-institutional, nationally-representative sample, 2) if the likelihood of having an engineering internship experiences is equitable amongst various student identities, and 3) what additional factors influence the likelihood of a student having an internship experience, such as field of study and institution type.
Data were drawn from a 2015 multi-institutional nationally representative survey of engineering juniors and seniors, excluding one institution with a mandatory co-op program (n = 5530 from 26 institutions). A z-test was used to analyze differences in internship participation rates related to academic cohort (e.g., junior, senior), gender, underrepresented minority (URM) status, first-generation, and low-income status, as well as a subset of identities at the intersection of these groups (gender + URM; first-generation + low-income). A logistic regression model further examined factors such as GPA, engineering task self-efficacy, field of engineering, and institution type.
We found that amongst the students in our dataset, 64.7% of the seniors had “worked in a professional engineering environment as an intern/co-op” (41.1% of juniors, 64.7% of 5th years). more »
- Award ID(s):
- 1830761
- Publication Date:
- NSF-PAR ID:
- 10284920
- Journal Name:
- 2021 ASEE Virtual Annual Conference
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
In order be successful, engineers must ask their clients, coworkers, and bosses questions. Asking questions can improve work quality and make the asker appear smarter. However, people often hesitate to ask questions for fear of seeming incompetent or inferior. This study investigates: what characteristics and experiences are connected to engineering students’ perceptions of asking questions? We analyzed data from a survey of over a thousand engineering undergraduates across a nationally representative sample of 27 U.S. engineering schools. We focused on three dependent variables: question-asking self-efficacy (how confident students are in their ability to ask a lot of questions), social outcome expectations around asking questions (whether students believe if they ask a lot of questions, they will earn the respect of their colleagues), and career outcome expectations (whether they believe asking a lot of questions will hurt their chances for getting ahead at work). We were surprised to find that question-asking self-efficacy or outcome expectations did not significantly vary by gender, under-represented minority status, and school size. However, students with high question-asking self-efficacy and outcome expectations were more likely to have engaged in four extracurricular experiences: participating in an internship or co-op, conducting research with a faculty member, participating in amore »
-
To gain a deeper understanding of the career decisions of undergraduate engineering students, this research paper explores the differences between students who show a high degree of career certainty and those who are rather uncertain about what their professional future should look like. These analyses were based on a dataset from a nationwide survey of engineering undergraduates (n=5,819) from 27 institutions in the United States. The survey was designed with an interest in understanding engineering students’ career pathways. For the purpose of this study, students were designated as either “career uncertain” or “career certain” according to their survey answers. Those two groups were then compared against a variety of background characteristics, past experiences and personality variables. The results suggest that career uncertain and career certain students do not differ on background variables such as gender, age or family income. However, when it comes to students’ past experiences, the percentage of students who had already gained internship experiences during their time in college was significantly higher among career certain students as compared to career uncertain students. As expected, seniors were more certain about their professional future than juniors. Similarly, a higher percentage of career certain students reported talking about their professionalmore »
-
This Research-to-Practice Full Paper investigates engineering students’ career goals and intentions regarding organizational settings, and how their goals and intentions relate to their background, learning and contextual measures. Moreover, despite vocational choice and turnover having been heavily studied in the literature, few studies have examined how students’ career goals relate to change in their organizational settings over time and how these perceptions then influence their turnover intentions. To fill in this research gap, this paper explores how organizational setting and respondent aspiration to be in that setting relate to turnover intentions. The paper is based on the nationally-representative, longitudinal Engineering Majors Survey and has a sample size of 350 respondents, characterized as employed and recently graduated (<2y) from an undergraduate engineering program. Respondents are categorized in three different alignment groups (Aligned, Fluid, Unaligned) according to their career goal achievement. Respondents who are currently employed in the type of organization, they had imagined being employed at a year earlier are called Aligned. Respondents who are actually employed in the type of organization (e.g., small versus large firm) to which they stated “Might or might not” be employed a year earlier are classified as Fluid. Finally, respondents, who work in the organizationalmore »
-
This Research-to-Practice Full Paper investigates engineering students’ career goals and intentions regarding organizational settings, and how their goals and intentions relate to their background, learning and contextual measures. Moreover, despite vocational choice and turnover having been heavily studied in the literature, few studies have examined how students’ career goals relate to change in their organizational settings over time and how these perceptions then influence their turnover intentions. To fill in this research gap, this paper explores how organizational setting and respondent aspiration to be in that setting relate to turnover intentions. The paper is based on the nationally-representative, longitudinal Engineering Majors Survey and has a sample size of 350 respondents, characterized as employed and recently graduated (<2y) from an undergraduate engineering program. Respondents are categorized in three different alignment groups (Aligned, Fluid, Unaligned) according to their career goal achievement. Respondents who are currently employed in the type of organization, they had imagined being employed at a year earlier are called Aligned. Respondents who are actually employed in the type of organization (e.g., small versus large firm) to which they stated “Might or might not” be employed a year earlier are classified as Fluid. Finally, respondents, who work in the organizationalmore »