skip to main content


Title: Internship Prevalence and Factors Related to Participation
The value of internship experiences for engineering students is widely discussed in the literature. With this analysis, we seek to contribute knowledge addressing 1) the prevalence of internship experiences amongst engineering students drawn from a large, multi-institutional, nationally-representative sample, 2) if the likelihood of having an engineering internship experiences is equitable amongst various student identities, and 3) what additional factors influence the likelihood of a student having an internship experience, such as field of study and institution type. Data were drawn from a 2015 multi-institutional nationally representative survey of engineering juniors and seniors, excluding one institution with a mandatory co-op program (n = 5530 from 26 institutions). A z-test was used to analyze differences in internship participation rates related to academic cohort (e.g., junior, senior), gender, underrepresented minority (URM) status, first-generation, and low-income status, as well as a subset of identities at the intersection of these groups (gender + URM; first-generation + low-income). A logistic regression model further examined factors such as GPA, engineering task self-efficacy, field of engineering, and institution type. We found that amongst the students in our dataset, 64.7% of the seniors had “worked in a professional engineering environment as an intern/co-op” (41.1% of juniors, 64.7% of 5th years). Significantly less likely (p<0.05) to have internship experiences were men compared to women (52.9% vs 58.3%), URM students compared to their majority counterparts (41.5% vs 56.8%), first-generation students compared to continuing (47.6% vs 57.2%), and low-income students compared to higher-income peers (46.2% vs 57.4%). Examined intersectional identities significantly less likely to have an internship were URM men (37.5%) and first-generation low-income students (42.0%), while non-URM women (60.5%) and continuing high-income students (58.2%) were most likely to report having an internship. Results from the logistic regression model indicate that significant factors are cohort (junior vs senior), GPA, engineering task self-efficacy, and engineering field. When controlling for the other variables in the model, gender, URM, first-generation, and low-income status remain significant; however, the interaction effect between these identities is not significant in the full model. Institution type did not have much impact. Having a research experience was not a significant factor in predicting the likelihood of having an internship experience, although studying abroad significantly increased the odds. Amongst engineering fields, industrial and civil engineering students were the most likely to have an internship, while aerospace and materials engineering students were the least likely. Full results and discussion will be presented in the paper. This analysis provides valuable information for a variety of stakeholders. For engineering programs, it is useful to benchmark historic students’ rates of internship participation against a multi-institutional, nationally representative dataset. For academic advisors and career services professionals, it is useful to understand in which fields an internship is common to be competitive on the job market, and which fields have fewer opportunities or prioritize research experiences. Ultimately, for those in higher education and workforce development it is vital to understand which identities, and intersectional identities, are accessing internship experiences as a pathway into the engineering workforce.  more » « less
Award ID(s):
1830761
NSF-PAR ID:
10284920
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
2021 ASEE Virtual Annual Conference
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. First-generation (FG) and/or low-income (LI) engineering student populations are of particular interest in engineering education. However, these populations are not defined in a consistent manner across the literature or amongst stakeholders. The intersectional identities of these groups have also not been fully explored in most quantitative-based engineering education research. This research paper aims to answer the following three research questions: (RQ1) How do students’ demographic characteristics and college experiences differ depending on levels of parent educational attainment (which forms the basis of first-generation definitions) and family income? (RQ2) How do ‘first-generation’ and ‘low-income’ definitions impact results comparing to their continuing-generation and higher-income peers? (RQ3) How does considering first-generation and low-income identities through an intersectional lens deepen insight into the experiences of first-generation and low-income groups? Data were drawn from a nationally representative survey of engineering juniors and seniors (n = 6197 from 27 U.S. institutions). Statistical analyses were conducted to evaluate respondent differences in demographics (underrepresented racial/ethnic minority (URM), women, URM women), college experiences (internships/co-ops, having a job, conducting research, and study abroad), and engineering task self-efficacy (ETSE), based on various definitions of ‘first generation’ and ‘low income’ depending on levels of parental educational attainment and self-reported family income. Our results indicate that categorizing a first-generation student as someone whose parents have less than an associate’s degree versus less than a bachelor’s degree may lead to different understandings of their experiences (RQ1). For example, the proportion of URM students is higher among those whose parents have less than an associate’s degree than among their “associate’s degree or more” peers (26% vs 11.9%). However, differences in college experiences are most pronounced among students whose parents have less than a bachelor’s degree compared with their “bachelor’s degree or more” peers: having a job to help pay for college (55.4% vs 47.3%), research with faculty (22.7% vs 35.0%), and study abroad (9.0% vs 17.3%). With respect to differences by income levels, respondents are statistically different across income groups, with fewer URM students as family income level increases. As family income level increases, there are more women in aggregate, but fewer URM women. College experiences are different for the middle income or higher group (internship 48.4% low and lower-middle income vs 59.0% middle income or higher; study abroad 11.2% vs 16.4%; job 58.6% vs 46.8%). Despite these differences in demographic characteristics and college experiences depending on parental educational attainment and family income, our dataset indicates that the definition does not change the statistical significance when comparing between first-generation students and students who were continuing-generation by any definition (RQ2). First-generation and low-income statuses are often used as proxies for one another, and in this dataset, are highly correlated. However, there are unique patterns at the intersection of these two identities. For the purpose of our RQ3 analysis, we define ‘first-generation’ as students whose parents earned less than a bachelor’s degree and ‘low-income’ as low or lower-middle income. In this sample, 68 percent of students were neither FG nor LI while 11 percent were both (FG&LI). On no measure of demographics or college experience is the FG&LI group statistically similar to the advantaged group. Low-income students had the highest participation in working to pay for college, regardless of parental education, while first-generation students had the lower internship participation than low-income students. Furthermore, being FG&LI is associated with lower ETSE compared with all other groups. These results suggest that care is required when applying the labels “first-generation” and/or “low-income” when considering these groups in developing institutional support programs, in engineering education research, and in educational policy. Moreover, by considering first-generation and low-income students with an intersectional lens, we gain deeper insight into engineering student populations that may reveal potential opportunities and barriers to educational resources and experiences that are an important part of preparation for an engineering career. 
    more » « less
  2. High-impact academic experiences, particularly research and internship experiences, have positive impacts for engineering students on engineering task self-efficacy (ETSE), a measure of students’ perception of their ability to perform technical engineering tasks. However, under- represented racial/ethnic minority students (URM) and women in engineering are found to have relatively lower self-perceptions across several academic and professional self-efficacy measures. Previous studies examined the impact of research and internship experiences on ETSE for students categorized by gender and URM status separately. The current study explores the impact of these experiences on ETSE for the intersection between these two identity categories. This study found that both non-URM and URM women that participated in research and internship experiences had lower ETSE scores than non-URM and URM men, respectively. However, URM women that participated in both research and internship experiences had a statistically similar ETSE score to non-URM men that had not participated in either. This study uses multiple linear regression to measure the association between engineering internships and student’s reported ETSE (effects of participating in research were not found to be significant across identities). Preliminary findings indicate that differences in ETSE between internship participants and non-participants are highest for URM women when compared to their counterparts. Consistent with the literature, this research finds that there is a greater positive effect in ETSE scores, as a result of participation in both research and internship experiences, for URM women than their majority counterparts. These preliminary results provide a foundation for further studies to causally investigate the link between academic experiences and self-efficacy levels for students who are underrepresented in engineering programs. Future implications of this work include the creation of targeted intervention efforts to increase support for all URM students’ access and participation in research and internship experiences. Additionally, this work seeks to challenge the bias towards monolithic interpretations of women and URM engineering students as separate categories and encourage intersectional perspectives when analyzing data to produce more inclusive results. Key Concepts: intersectionality, self-efficacy, engineering task self-efficacy, learning outcomes, academic pathways, inclusion, engineering experiences, research, internships 
    more » « less
  3. To gain a deeper understanding of the career decisions of undergraduate engineering students, this research paper explores the differences between students who show a high degree of career certainty and those who are rather uncertain about what their professional future should look like. These analyses were based on a dataset from a nationwide survey of engineering undergraduates (n=5,819) from 27 institutions in the United States. The survey was designed with an interest in understanding engineering students’ career pathways. For the purpose of this study, students were designated as either “career uncertain” or “career certain” according to their survey answers. Those two groups were then compared against a variety of background characteristics, past experiences and personality variables. The results suggest that career uncertain and career certain students do not differ on background variables such as gender, age or family income. However, when it comes to students’ past experiences, the percentage of students who had already gained internship experiences during their time in college was significantly higher among career certain students as compared to career uncertain students. As expected, seniors were more certain about their professional future than juniors. Similarly, a higher percentage of career certain students reported talking about their professional future with other students or faculty members more frequently. Furthermore, career certain students were significantly more likely to show a higher level of innovation self-efficacy and engineering task self-efficacy. In addition, career certain students were more likely to have career goals that involved innovation and they also considered several job characteristics as more important than did uncertain students. On average, career certain engineering students were also more certain about staying in engineering one, five and ten years after graduation. Overall, the results of this research suggest that more hands-on experiences and fostering stronger beliefs in their engineering skills can contribute to undergraduates becoming more certain about their future professional careers. 
    more » « less
  4. In order be successful, engineers must ask their clients, coworkers, and bosses questions. Asking questions can improve work quality and make the asker appear smarter. However, people often hesitate to ask questions for fear of seeming incompetent or inferior. This study investigates: what characteristics and experiences are connected to engineering students’ perceptions of asking questions? We analyzed data from a survey of over a thousand engineering undergraduates across a nationally representative sample of 27 U.S. engineering schools. We focused on three dependent variables: question-asking self-efficacy (how confident students are in their ability to ask a lot of questions), social outcome expectations around asking questions (whether students believe if they ask a lot of questions, they will earn the respect of their colleagues), and career outcome expectations (whether they believe asking a lot of questions will hurt their chances for getting ahead at work). We were surprised to find that question-asking self-efficacy or outcome expectations did not significantly vary by gender, under-represented minority status, and school size. However, students with high question-asking self-efficacy and outcome expectations were more likely to have engaged in four extracurricular experiences: participating in an internship or co-op, conducting research with a faculty member, participating in a student group, and holding a leadership role in an organization or student group. The number of different types of these extracurricular activities a student engaged in correlated with question-asking self-efficacy and positive outcome expectations around asking questions. The results illustrate the relationship between extracurricular activities and students’ self-efficacy and behavior outcome expectations. The college experience is more than just formal academic classes. Students learn from experiences that occur after class or during the summer, and ideally these experiences complement class-derived skills and confidence in asking questions. 
    more » « less
  5. This Research-to-Practice Full Paper investigates engineering students’ career goals and intentions regarding organizational settings, and how their goals and intentions relate to their background, learning and contextual measures. Moreover, despite vocational choice and turnover having been heavily studied in the literature, few studies have examined how students’ career goals relate to change in their organizational settings over time and how these perceptions then influence their turnover intentions. To fill in this research gap, this paper explores how organizational setting and respondent aspiration to be in that setting relate to turnover intentions. The paper is based on the nationally-representative, longitudinal Engineering Majors Survey and has a sample size of 350 respondents, characterized as employed and recently graduated (<2y) from an undergraduate engineering program. Respondents are categorized in three different alignment groups (Aligned, Fluid, Unaligned) according to their career goal achievement. Respondents who are currently employed in the type of organization, they had imagined being employed at a year earlier are called Aligned. Respondents who are actually employed in the type of organization (e.g., small versus large firm) to which they stated “Might or might not” be employed a year earlier are classified as Fluid. Finally, respondents, who work in the organizational setting, which they did not want to work in one year prior, are called Unaligned. The paper also determines respondents turnover intentions (Stay, Flexible, Go) related to organizational settings, such as small companies or medium and large companies. Alignment and turnover groups were then compared with each other in relation to background, learning, and contextual measures. Background measures are gender, underrepresented minority status, and first generation to college status. Learning measures are internship experience, and contextual measures are job satisfaction and grade point average. The findings suggest that most of these recent graduates are Aligned and want to Stay in their organizational setting. Employees in small companies are relatively less Aligned and are more likely to Go and leave the organizational setting than are employees in large companies. Respondents who have done an internship are more often Aligned and less likely want to Go and leave their organizational setting than those who have not done an internship. These results suggest that many respondents decide before graduation on an organizational setting and continue to desire the same organizational setting after being employed for some time. Future longitudinal research should compare organizational settings-based turnover intentions with turnover intentions related to specific companies, -as a complement to much of the in literature on turnover intentions mostly refers to leaving specific organizations. Keywords: career decisions, labor turnover intentions, organizational setting, engineering graduates, alignment 
    more » « less