skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Multiple Plans are Better than One: Diverse Stochastic Planning
In planning problems, it is often challenging to fully model the desired specifications. In particular, in human-robot interaction, such difficulty may arise due to human's preferences that are either private or complex to model. Consequently, the resulting objective function can only partially capture the specifications and optimizing that may lead to poor performance with respect to the true specifications. Motivated by this challenge, we formulate a problem, called diverse stochastic planning, that aims to generate a set of representative---small and diverse---behaviors that are near-optimal with respect to the known objective. In particular, the problem aims to compute a set of diverse and near-optimal policies for systems modeled by a Markov decision process. We cast the problem as a constrained nonlinear optimization for which we propose a solution relying on the Frank-Wolfe method. We then prove that the proposed solution converges to a stationary point and demonstrate its efficacy in several planning problems.  more » « less
Award ID(s):
1836900
PAR ID:
10284943
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
International Conference on Automated Planning and Scheduling
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In radiation therapy treatment plan optimization, selecting a set of clinical objectives that are tractable and parsimonious yet effective is a challenging task. In clinical practice, this is typically done by trial and error based on the treatment planner’s subjective assessment, which often makes the planning process inefficient and inconsistent. We develop the objective selection problem that infers a sparse set of objectives for prostate cancer treatment planning based on historical treatment data. We formulate the problem as a nonconvex bilevel mixed-integer program using inverse optimization and highlight its connection with feature selection to propose multiple solution approaches, including greedy heuristics and regularized problems and application-specific methods that use anatomical information of the patients. Our results show that the proposed heuristics find objectives that are near optimal. Via curve analysis on dose-volume histograms, we show that the learned objectives closely represent latent clinical preferences. 
    more » « less
  2. Integer programming (IP) has proven to be highly effective in solving many path-based optimization problems in robotics. However, the applications of IP are generally done in an ad-hoc, problem-specific manner. In this work, after examined a wide range of path-based optimization problems, we describe an IP solution methodology for these problems that is both easy to apply (in two simple steps) and high-performance in terms of the computation time and the achieved optimal- ity. We demonstrate the generality of our approach through the application to three challenging path-based optimization problems: multi-robot path planning (MPP), minimum constraint removal (MCR), and reward collection problems (RCPs). Associ- ated experiments show that the approach can efficiently produce (near-)optimal solutions for problems with large state spaces, complex constraints, and complicated objective functions. In conjunction with the proposition of the IP methodology, we introduce two new and practical robotics problems: multi-robot minimum constraint removal (MMCR) and multi-robot path planning (MPP) with partial solutions, which can be quickly and effectively solved using our proposed IP solution pipeline. 
    more » « less
  3. Braverman, Mark (Ed.)
    We develop approximation algorithms for set-selection problems with deterministic constraints, but random objective values, i.e., stochastic probing problems. When the goal is to maximize the objective, approximation algorithms for probing problems are well-studied. On the other hand, few techniques are known for minimizing the objective, especially in the adaptive setting, where information about the random objective is revealed during the set-selection process and allowed to influence it. For minimization problems in particular, incorporating adaptivity can have a considerable effect on performance. In this work, we seek approximation algorithms that compare well to the optimal adaptive policy. We develop new techniques for adaptive minimization, applying them to a few problems of interest. The core technique we develop here is an approximate reduction from an adaptive expectation minimization problem to a set of adaptive probability minimization problems which we call threshold problems. By providing near-optimal solutions to these threshold problems, we obtain bicriteria adaptive policies. We apply this method to obtain an adaptive approximation algorithm for the Min-Element problem, where the goal is to adaptively pick random variables to minimize the expected minimum value seen among them, subject to a knapsack constraint. This partially resolves an open problem raised in [Goel et al., 2010]. We further consider three extensions on the Min-Element problem, where our objective is the sum of the smallest k element-weights, or the weight of the min-weight basis of a given matroid, or where the constraint is not given by a knapsack but by a matroid constraint. For all three of the variations we explore, we develop adaptive approximation algorithms for their corresponding threshold problems, and prove their near-optimality via coupling arguments. 
    more » « less
  4. Ruiz, Francisco; Dy, Jennifer; van de Meent, Jan-Willem (Ed.)
    In this paper, we study a class of bilevel optimization problems, also known as simple bilevel optimization, where we minimize a smooth objective function over the optimal solution set of another convex constrained optimization problem. Several iterative methods have been developed for tackling this class of problems. Alas, their convergence guarantees are either asymptotic for the upper-level objective, or the convergence rates are slow and sub-optimal. To address this issue, in this paper, we introduce a novel bilevel optimization method that locally approximates the solution set of the lower-level problem via a cutting plane and then runs a conditional gradient update to decrease the upper-level objective. When the upper-level objective is convex, we show that our method requires $${O}(\max\{1/\epsilon_f,1/\epsilon_g\})$$ iterations to find a solution that is $$\epsilon_f$$-optimal for the upper-level objective and $$\epsilon_g$$-optimal for the lower-level objective. Moreover, when the upper-level objective is non-convex, our method requires $${O}(\max\{1/\epsilon_f^2,1/(\epsilon_f\epsilon_g)\})$$ iterations to find an $$(\epsilon_f,\epsilon_g)$$-optimal solution. We also prove stronger convergence guarantees under the Holderian error bound assumption on the lower-level problem. To the best of our knowledge, our method achieves the best-known iteration complexity for the considered class of bilevel problems. 
    more » « less
  5. We propose an algorithm using method of evolving junctions to solve the optimal path planning problems with piece-wise constant flow fields. In such flow fields, we prove that the optimal trajectories, with respect to a convex Lagrangian in the objective function, must be formed by piece-wise constant velocity motions. Taking advantage of this property, we transform the infinite dimensional optimal control problem into a finite dimensional optimization and use intermittent diffusion to solve the problems. The algorithm is proven to be complete. At last, we demonstrate the performance of the algorithm with various simulation examples. 
    more » « less