In this work, we study the optimal design of two-armed clinical trials to maximize the accuracy of parameter estimation in a statistical model, where the interaction between patient covariates and treatment are explicitly incorporated to enable precision medication decisions. Such a modeling extension leads to significant complexities for the produced optimization problems because they include optimization over design and covariates concurrently. We take a min-max optimization model and minimize (over design) the maximum (over population) variance of the estimated interaction effect between treatment and patient covariates. This results in a min-max bilevel mixed integer nonlinear programming problem, which is notably challenging to solve. To address this challenge, we introduce a surrogate optimization model by approximating the objective function, for which we propose two solution approaches. The first approach provides an exact solution based on reformulation and decomposition techniques. In the second approach, we provide a lower bound for the inner optimization problem and solve the outer optimization problem over the lower bound. We test our proposed algorithms with synthetic and real-world data sets and compare them with standard (re)randomization methods. Our numerical analysis suggests that the proposed approaches provide higher-quality solutions in terms of the variance of estimators and probability of correct selection. We also show the value of covariate information in precision medicine clinical trials by comparing our proposed approaches to an alternative optimal design approach that does not consider the interaction terms between covariates and treatment. Summary of Contribution: Precision medicine is the future of healthcare where treatment is prescribed based on each patient information. Designing precision medicine clinical trials, which are the cornerstone of precision medicine, is extremely challenging because sample size is limited and patient information may be multidimensional. This work proposes a novel approach to optimally estimate the treatment effect for each patient type in a two-armed clinical trial by reducing the largest variance of personalized treatment effect. We use several statistical and optimization techniques to produce efficient solution methodologies. Results have the potential to save countless lives by transforming the design and implementation of future clinical trials to ensure the right treatments for the right patients. Doing so will reduce patient risks and reduce costs in the healthcare system.
more »
« less
Objective Selection for Cancer Treatment: An Inverse Optimization Approach
In radiation therapy treatment plan optimization, selecting a set of clinical objectives that are tractable and parsimonious yet effective is a challenging task. In clinical practice, this is typically done by trial and error based on the treatment planner’s subjective assessment, which often makes the planning process inefficient and inconsistent. We develop the objective selection problem that infers a sparse set of objectives for prostate cancer treatment planning based on historical treatment data. We formulate the problem as a nonconvex bilevel mixed-integer program using inverse optimization and highlight its connection with feature selection to propose multiple solution approaches, including greedy heuristics and regularized problems and application-specific methods that use anatomical information of the patients. Our results show that the proposed heuristics find objectives that are near optimal. Via curve analysis on dose-volume histograms, we show that the learned objectives closely represent latent clinical preferences.
more »
« less
- Award ID(s):
- 1826297
- PAR ID:
- 10387983
- Date Published:
- Journal Name:
- Operations Research
- Volume:
- 70
- Issue:
- 3
- ISSN:
- 0030-364X
- Page Range / eLocation ID:
- 1717 to 1738
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Over the years, many motion planning algorithms have been proposed. It is often unclear which algorithm might be best suited for a particular class of problems. The problem is compounded by the fact that algorithm performance can be highly dependent on parameter settings. This paper shows that hyperparameter optimization is an effective tool in both algorithm selection and parameter tuning over a given set of motion planning problems. We present different loss functions for optimization that capture different notions of optimality. The approach is evaluated on a broad range of scenes using two different manipulators, a Fetch and a Baxter. We show that optimized planning algorithm performance significantly improves upon baseline performance and generalizes broadly in the sense that performance improvements carry over to problems that are very different from the ones considered during optimization.more » « less
-
It has been recently shown that an additional therapeutic gain may be achieved if a radiotherapy plan is altered over the treatment course using a new treatment paradigm referred to in the literature as spatiotemporal fractionation. Because of the nonconvex and large-scale nature of the corresponding treatment plan optimization problem, the extent of the potential therapeutic gain that may be achieved from spatiotemporal fractionation has been investigated using stylized cancer cases to circumvent the arising computational challenges. This research aims at developing scalable optimization methods to obtain high-quality spatiotemporally fractionated plans with optimality bounds for clinical cancer cases. In particular, the treatment-planning problem is formulated as a quadratically constrained quadratic program and is solved to local optimality using a constraint-generation approach, in which each subproblem is solved using sequential linear/quadratic programming methods. To obtain optimality bounds, cutting-plane and column-generation methods are combined to solve the Lagrangian relaxation of the formulation. The performance of the developed methods are tested on deidentified clinical liver and prostate cancer cases. Results show that the proposed method is capable of achieving local-optimal spatiotemporally fractionated plans with an optimality gap of around 10%–12% for cancer cases tested in this study. Summary of Contribution: The design of spatiotemporally fractionated radiotherapy plans for clinical cancer cases gives rise to a class of nonconvex and large-scale quadratically constrained quadratic programming (QCQP) problems, the solution of which requires the development of efficient models and solution methods. To address the computational challenges posed by the large-scale and nonconvex nature of the problem, we employ large-scale optimization techniques to develop scalable solution methods that find local-optimal solutions along with optimality bounds. We test the performance of the proposed methods on deidentified clinical cancer cases. The proposed methods in this study can, in principle, be applied to solve other QCQP formulations, which commonly arise in several application domains, including graph theory, power systems, and signal processing.more » « less
-
Recent clinical trials have shown that adaptive drug therapies can be more efficient than a standard cancer treatment based on a continuous use of maximum tolerated doses (MTD). The adaptive therapy paradigm is not based on a preset schedule; instead, the doses are administered based on the current state of tumour. But the adaptive treatment policies examined so far have been largely ad hoc. We propose a method for systematically optimizing adaptive policies based on an evolutionary game theory model of cancer dynamics. Given a set of treatment objectives, we use the framework of dynamic programming to find the optimal treatment strategies. In particular, we optimize the total drug usage and time to recovery by solving a Hamilton–Jacobi–Bellman equation. We compare MTD-based treatment strategy with optimal adaptive treatment policies and show that the latter can significantly decrease the total amount of drugs prescribed while also increasing the fraction of initial tumour states from which the recovery is possible. We conclude that the use of optimal control theory to improve adaptive policies is a promising concept in cancer treatment and should be integrated into clinical trial design.more » « less
-
null (Ed.)The work presented in this paper demonstrates the use of context-aware recommendation to facilitate personalized education, by assisting students in selecting courses and course content and mapping a trajectory to graduation. The recommendation algorithm considers a student's profile and their program's curricular requirements in generating a schedule of courses, while aiming to reduce attributes such as cost and time-to-degree. The resulting optimization problem is solved using integer linear programming and graph-based heuristics. The course selection algorithm has been developed for the Pervasive Cyberinfrastructure for Personalized eLearning and Instructional Support (PERCEPOLIS), which can assist or supplement the degree planning actions of an academic advisor, with assurance that recommended selections are always valid.more » « less
An official website of the United States government

