skip to main content


Title: Influence of Upper-Troposphere Stratification and Cloud-Radiation Interaction on Convective Overshoots in the Tropical Tropopause Layer
Abstract It is still debated whether radiative heating observed in the tropical tropopause layer (TTL) is balanced primarily by cooling from convective overshoots, as in an entrainment layer, or by adiabatic cooling from large-scale eddy-driven upwelling. In this study, three-dimensional cloud-resolving model simulations of radiative-convective equilibrium were carried out with three different cloud microphysics schemes and 1-km horizontal resolution. We demonstrate that overshooting cooling in the TTL can be strongly modulated by upper-troposphere stratification. Two of the schemes produce a hard-landing scenario in which convective overshoots reach the TTL with frequent large vertical velocity leading to strong overshooting cooling (~ −0.2 K day -1 ). The third scheme produces a soft-landing scenario in which convective overshoots rarely reach the TTL with large vertical velocity and produce little overshooting cooling (~ −0.03 K day -1 ). The difference between the two scenarios is attributed to changes in the upper-troposphere stratification related to different atmospheric cloud radiative effects (ACRE). The microphysics scheme that produces the soft-landing scenario has much stronger ACRE in the upper troposphere leading to a ~3K warmer and more stable layer which acts as a buffer zone to slow down the convective updrafts. The stratification mechanism suggests the possibility for the ozone variation or eddy-driven upwelling in the TTL to modulate convective overshoots. We further test the sensitivity of overshooting cooling to changes in model resolution by increasing the horizontal resolution to 100 m. The corresponding change of overshooting cooling is much smaller compared with the difference between the hard-landing and soft-landing scenarios.  more » « less
Award ID(s):
1743753
NSF-PAR ID:
10284990
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Journal of the Atmospheric Sciences
ISSN:
0022-4928
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Pervasive cirrus clouds in the upper troposphere and tropical tropopause layer (TTL) influence the climate by altering the top‐of‐atmosphere radiation balance and stratospheric water vapor budget. These cirrus are often associated with deep convection, which global climate models must parameterize and struggle to accurately simulate. By comparing high‐resolution global storm‐resolving models from the Dynamics of the Atmospheric general circulation Modeled On Non‐hydrostatic Domains (DYAMOND) intercomparison that explicitly simulate deep convection to satellite observations, we assess how well these models simulate deep convection, convectively generated cirrus, and deep convective injection of water into the TTL over representative tropical land and ocean regions. The DYAMOND models simulate deep convective precipitation, organization, and cloud structure fairly well over land and ocean regions, but with clear intermodel differences. All models produce frequent overshooting convection whose strongest updrafts humidify the TTL and are its main source of frozen water. Intermodel differences in cloud properties and convective injection exceed differences between land and ocean regions in each model. We argue that, with further improvements, global storm‐resolving models can better represent tropical cirrus and deep convection in present and future climates than coarser‐resolution climate models. To realize this potential, they must use available observations to perfect their ice microphysics and dynamical flow solvers.

     
    more » « less
  2. A two‐column radiative–convective equilibrium (RCE) model is used to study the depth of convection that develops in the subsiding branch of a Walker‐like overturning circulation. The model numerically solves for two‐dimensional non‐rotating hydrostatic flow, which is damped by momentum diffusion in the boundary layer and model interior, and by convective momentum transport. Convection, clouds and radiative transfer are parametrized, and the convection scheme does not include explicit freezing or melting.

    While integrating the model towards local RCE, the level of neutral buoyancy (LNB) fluctuates between mid‐ and high levels. Evaporation of detrained moisture at the LNB locally cools the environment, so that the final RCE state has a stable layer at mid‐levels (550 hPa ≈ 50–100 hPa below 0 °C), which is unrelated to melting of ice. Preferred detrainment at mid‐ and high levels leaves the middle‐to‐upper troposphere relatively dry.

    A circulation is introduced by incrementally lowering the sea‐surface temperature in one column, which collapses convection: first to a congestus mode with tops near 550 hPa, below the dry layer created in RCE; then to congestus with tops near 650 hPa; and finally to shallow cumulus with tops near 850 hPa. Critical to stabilizing congestus near 650 hPa is large radiative cooling near moist cumulus tops under a dry upper atmosphere. This congestus mode is very sensitive, and only develops when horizontal temperature gradients created by evaporative and radiative cooling can persist against the work of gravity waves. This only happens in runs with ample momentum diffusion, which are those with convective momentum transport or large domains.

    Compared to the shallow mode, the congestus mode produces a deep moist layer and more precipitation. This reduces radiative cooling in the cloud layer and enhances stability near the cloud base, which weakens the circulation, and leads to less precipitation over the warm ocean.

     
    more » « less
  3. Abstract. Cirrus clouds that form in the tropical tropopause layer(TTL) can play a key role in vertical transport through the uppertroposphere and lower stratosphere, which can significantly impact theradiative energy budget and stratospheric chemistry. However, the lack ofrealistic representation of natural ice cloud habits in microphysicalparameterizations can lead to uncertainties in cloud-related processes andcloud–climate feedbacks. The main goal of this study is to investigate therole of different cloud regimes and the associated ice habits in regulatingthe properties of the TTL. We compare aircraft measurements from theStratoClim field campaign to a set of numerical experiments at the scale of large-eddy simulations (LESs) for the same case study that employ differentmicrophysics schemes. Aircraft measurements over the southern slopes of theHimalayas captured high ice water content (HIWC) up to 2400 ppmv and iceparticle aggregates exceeding 700 µm in size with unusually longresidence times. The observed ice particles were mainly of liquid origin,with a small amount formed in situ. The corresponding profile of ice water content (IWC) fromthe ERA5 reanalysis corroborates the presence of HIWC detrained from deep-convective plumes in the TTL but underestimates HIWC by an order ofmagnitude. In the TTL, only the scheme that predicts ice habits canreproduce the observed HIWC, ice number concentration, and bimodal iceparticle size distribution. The lower range of particle sizes is mostlyrepresented by planar and columnar habits, while the upper range isdominated by aggregates. Large aggregates with sizes between 600 and 800 µm have fall speeds of less than 20 cm s−1, which explains thelong residence time of the aggregates in the TTL. Planar ice particles ofliquid origin contribute substantially to HIWC. The columnar and aggregatehabits are in the in situ range with lower IWC and number concentrations. Forall habits, the ice number concentration increases with decreasingtemperature. For the planar ice habit, relative humidity is inverselycorrelated with fall speed. This correlation is less evident for the othertwo ice habits. In the lower range of supersaturation with respect to ice,the columnar habit has the highest fall speed. The difference in ice numberconcentration across habits can be up to 4 orders of magnitude, withaggregates occurring in much smaller numbers. We demonstrate and quantifythe linear relationship between the differential sedimentation of pristineice crystals and the size of the aggregates that form when pristine crystalscollide. The slope of this relationship depends on which pristine ice habitsediments faster. Each simulated ice habit is associated with distinctradiative and latent heating rates. This study suggests that a modelconfiguration nested down to LES scales with a microphysicalparameterization that predicts ice shape evolution is crucial to provide anaccurate representation of the microphysical properties of TTL cirrus andthus the associated (de)hydration process. 
    more » « less
  4. Abstract

    The radiative cooling rate in the tropical upper troposphere is expected to increase as climate warms. Since the tropics are approximately in radiative–convective equilibrium (RCE), this implies an increase in the convective heating rate, which is the sum of the latent heating rate and the eddy heat flux convergence. We examine the impact of these changes on the vertical profile of cloud ice amount in cloud-resolving simulations of RCE. Three simulations are conducted: a control run, a warming run, and an experimental run in which there is no warming but a temperature forcing is imposed to mimic the warming-induced increase in radiative cooling. Surface warming causes a reduction in cloud fraction at all upper-tropospheric temperature levels but an increase in the ice mixing ratio within deep convective cores. The experimental run has more cloud ice than the warming run at fixed temperature despite the fact that their latent heating rates are equal, which suggests that the efficiency of latent heating by cloud ice increases with warming. An analytic expression relating the ice-related latent heating rate to a number of other factors is derived and used to understand the model results. This reveals that the increase in latent heating efficiency is driven mostly by 1) the migration of isotherms to lower pressure and 2) a slight warming of the top of the convective layer. These physically robust changes act to reduce the residence time of ice at any particular temperature level, which tempers the response of the mean cloud ice profile to warming.

    Significance Statement

    Here we examine how the amount of condensed ice in part of the atmosphere—the tropical upper troposphere (UT)—responds to global warming. In the UT, the energy released during ice formation is balanced by the emission of radiation to space. This emission will strengthen with warming, suggesting that there will also be more ice. Using a model of the tropical atmosphere, we find that the increase in ice amount is mitigated by a reduction in the amount of time ice spends in the UT. This could have important implications for the cloud response to global warming, and future work should focus on how these changes are manifested across the distribution of convective cloud types.

     
    more » « less
  5. A single-column radiative-convective model (RCM) is a useful tool to investigate the physical processes that determine the tropical tropopause layer (TTL) temperature structures. Previous studies on the TTL using the RCMs, however, omitted the cloud radiative effects. In this study, we examine the impact of cloud radiative effects on the simulated TTL temperatures using an RCM. We derive the cloud radiative effects based on satellite observations, which show heating rates in the troposphere but cooling rates in the stratosphere. We find that the cloud radiative effect warms the TTL by as much as 2 K but cools the lower stratosphere by as much as −1.5 K, resulting in a thicker TTL. With (without) considering cloud radiative effects, we obtain a convection top of ≈167 hPa (≈150 hPa) with a temperature of ≈213 K (≈209 K), and a cold point at ≈87 hPa (≈94 hPa) with a temperature of ≈204 K (≈204 K). Therefore, the cloud radiative effects widen the TTL by both lowering the convection-top height and enhancing the cold-point height. We also examine the impact of TTL cirrus radiative effects on the RCM-simulated temperatures. We find that the TTL cirrus warms the TTL with a maximum temperature increase of ≈1.3 K near 110 hPa. 
    more » « less