skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: No anomalous supersaturation in ultracold cirrus laboratory experiments
Abstract. High-altitude cirrus clouds are climatically important: their formationfreeze-dries air ascending to the stratosphere to its final value, and theirradiative impact is disproportionately large. However, their formation andgrowth are not fully understood, and multiple in situ aircraft campaigns haveobserved frequent and persistent apparent water vapor supersaturations of5 %–25 % in ultracold cirrus (T<205 K), even in the presence of iceparticles. A variety of explanations for these observations have been putforth, including that ultracold cirrus are dominated by metastable ice whosevapor pressure exceeds that of hexagonal ice. The 2013 IsoCloud campaign atthe Aerosol Interaction and Dynamics in the Atmosphere (AIDA) cloud andaerosol chamber allowed explicit testing of cirrus formation dynamics atthese low temperatures. A series of 28 experiments allows robust estimationof the saturation vapor pressure over ice for temperatures between 189 and235 K, with a variety of ice nucleating particles. Experiments are rapidenough (∼10 min) to allow detection of any metastable ice that mayform, as the timescale for annealing to hexagonal ice is hours or longer overthe whole experimental temperature range. We show that in all experiments,saturation vapor pressures are fully consistent with expected values forhexagonal ice and inconsistent with the highest values postulated formetastable ice, with no temperature-dependent deviations from expectedsaturation vapor pressure. If metastable ice forms in ultracold cirrusclouds, it appears to have a vapor pressure indistinguishable from that ofhexagonal ice to within about 4.5 %.  more » « less
Award ID(s):
1743753
PAR ID:
10284991
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
Atmospheric Chemistry and Physics
Volume:
20
Issue:
2
ISSN:
1680-7324
Page Range / eLocation ID:
1089 to 1103
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract. Ice growth from vapor deposition is an important process for the evolution of cirrus clouds, but the physics of depositional ice growth at the low temperatures (<235 K) characteristic of the upper troposphere and lower stratosphere is not well understood. Surface attachment kinetics, generally parameterized as a deposition coefficient αD, control ice crystal habit and also may limit growth rates in certain cases, but significant discrepancies between experimental measurements have not been satisfactorily explained. Experiments on single ice crystals have previously indicated the deposition coefficient is a function of temperature and supersaturation, consistent with growth mechanisms controlled by the crystal's surface characteristics. Here we use observations from cloud chamber experiments in the Aerosol Interactions and Dynamics in theAtmosphere (AIDA) aerosol and cloud chamber to evaluate surface kinetic models in realistic cirrus conditions. These experiments have rapidly changing temperature, pressure, and ice supersaturation such that depositional ice growth may evolve from diffusion limited to surface kinetics limited over the course of a single experiment. In Part 1, we describe the adaptation of a Lagrangian parcel model with the Diffusion Surface Kinetics Ice Crystal Evolution (DiSKICE) model (Zhang and Harrington, 2014) to the AIDA chamber experiments. We compare the observed ice water content and saturation ratios to that derived under varying assumptions for ice surface growth mechanisms for experiments simulating ice clouds between 180 and 235 K and pressures between 150 and 300 hPa. We found that both heterogeneous and homogeneous nucleation experiments at higher temperatures (>205 K) could generally be modeled consistently with either a constant deposition coefficient or the DiSKICE model assuming growth on isometric crystals via abundant surface dislocations. Lower-temperature experiments showed more significant deviations from any depositional growth model, with different ice growth rates for heterogeneous and homogeneous nucleation experiments. 
    more » « less
  2. Abstract Cirrus ice crystals are produced heterogeneously on ice‐nucleating particles (INPs) and homogeneously in supercooled liquid solution droplets. They grow by uptake of water molecules from the ice‐supersaturated vapor. The precursor particles, characterized by disparate ice nucleation abilities and number concentrations, compete for available vapor during ice formation events. We investigate cirrus formation events systematically in different temperature and updraft regimes, and for different INP number concentrations and time‐independent nucleation efficiencies. We consider vertical air motion variability due to mesoscale gravity waves and effects of supersaturation‐dependent deposition coefficients for water molecules on ice surfaces. We analyze ice crystal properties to better understand the dynamics of competing nucleation processes. We study the reduction of ice crystal numbers produced by homogeneous freezing due to INPs in both, individual simulations assuming constant updraft speeds and in ensemble simulations based on a stochastic representation of vertical wind speed fluctuations. We simulate and interpret probability distributions of total nucleated ice crystal number concentrations, showing signatures of homogeneous and heterogeneous nucleation. At typically observed, mean updraft speeds (≈15 cm s−1) competing nucleation should occur frequently, even at rather low INP number concentrations (<10 L−1). INPs increase cirrus occurrence and may alter cirrus microphysical properties without entirely suppressing homogeneous freezing events. We suggest to improve ice growth models, especially for low cirrus temperatures (<220 K) and low ice supersaturation (<0.3). 
    more » « less
  3. Abstract Aircraft measurements reveal ice supersaturation statistics in cirrus (ISSs) with broad maxima around ice saturation and pronounced variance. In this study, processes shaping ISSs in midlatitude and tropical upper tropospheric conditions are systematically investigated. Water vapor deposition and sublimation of size‐resolved ice crystal populations are simulated in an air parcel framework. Mesoscale temperature fluctuations (MTFs) due to gravity waves force the temporal evolution of supersaturation. Various levels of background wave forcing and cirrus thickness are distinguished in stochastic ensemble simulations. Kinetic limitations to ice mass growth are brought about by supersaturation‐dependent deposition coefficients that represent efficient and inefficient growth modes as a function of ice crystal size. The simulations identify a wide range of deposition coefficients in cirrus, but most values stay above 0.01 such that kinetic limitations to water uptake remain moderate. Supersaturation quenching times are long, typically 0.5–2 hr. The wave forcing thus causes a remarkably large variability in ISSs and cirrus microphysical properties except in the thickest cirrus, producing ensemble‐mean ISSs in line with in‐situ measurements. ISS variance is controlled by MTFs and increases with decreasing cirrus integral radii. In comparison, the impact of ice crystal growth rates on ISSs is small. These results contribute to efforts directed at identifying and solving issues associated with ice‐supersaturated areas and non‐equilibrium cirrus physics in global models. 
    more » « less
  4. Ice nucleation in the atmosphere influences cloud properties, altering precipitation and the radiative balance, ultimately regulating Earth’s climate. An accepted ice nucleation pathway, known as deposition nucleation, assumes a direct transition of water from the vapor to the ice phase, without an intermediate liquid phase. However, studies have shown that nucleation occurs through a liquid phase in porous particles with narrow cracks or surface imperfections where the condensation of liquid below water saturation can occur, questioning the validity of deposition nucleation. We show that deposition nucleation cannot explain the strongly enhanced ice nucleation efficiency of porous compared with nonporous particles at temperatures below −40 °C and the absence of ice nucleation below water saturation at −35 °C. Using classical nucleation theory (CNT) and molecular dynamics simulations (MDS), we show that a network of closely spaced pores is necessary to overcome the barrier for macroscopic ice-crystal growth from narrow cylindrical pores. In the absence of pores, CNT predicts that the nucleation barrier is insurmountable, consistent with the absence of ice formation in MDS. Our results confirm that pore condensation and freezing (PCF), i.e., a mechanism of ice formation that proceeds via liquid water condensation in pores, is a dominant pathway for atmospheric ice nucleation below water saturation. We conclude that the ice nucleation activity of particles in the cirrus regime is determined by the porosity and wettability of pores. PCF represents a mechanism by which porous particles like dust could impact cloud radiative forcing and, thus, the climate via ice cloud formation. 
    more » « less
  5. Abstract The mechanisms controlling ice crystal growth rates at lowtemperature (T< −40°C) are relatively unknown. A new thermal-gradient diffusion chamber was developed to capture high-resolution images of ice crystals growing from a substrate with minimal vapor competition or shadowing. Time series of dimensional growth rates of columnar ice crystals at cirrus-like temperatures (−67 to −46°C) and moderate to high supersaturation (28 to 80 %) were determined from these images. Results show that growth rates of both primary facet dimensions (aandc) decrease over about the first hour of each experiment, but asymptotically approach constant values. Thea-dimension growth rate is well correlated with the environmental conditions, declining with decreasing temperature and increasing supersaturation. In contrast,c-dimension growth rates from individual experiments are not correlated with temperature and slightly correlated with supersaturation. Together, these trends produce aspect ratios that approach constant values that are negatively correlated with temperature. The ratio of the asymptotic growth rates (dc/da) is tightly correlated with the aspect ratio (ø = c/a), which supports the predictions of crystal growth theory assuming that steps nucleate near facet edges. In contrast, predictions from capacitance theory are not consistent with the measurements. 
    more » « less