skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Arsenate-Induced Changes in Bacterial Metabolite and Lipid Pools during Phosphate Stress
ABSTRACT Agrobacterium tumefaciens GW4 is a heterotrophic arsenite-oxidizing bacterium with a high resistance to arsenic toxicity. It is now a model organism for studying the processes of arsenic detoxification and utilization. Previously, we demonstrated that under low-phosphate conditions, arsenate [As(V)] could enhance bacterial growth and be incorporated into biomolecules, including lipids. While the basic microbial As(V) resistance mechanisms have been characterized, global metabolic responses under low phosphate remain largely unknown. In the present work, the impacts of As(V) and low phosphate on intracellular metabolite and lipid profiles of GW4 were quantified using liquid chromatography-mass spectroscopy (LC-MS) in combination with transcriptional assays and the analysis of intracellular ATP and NADH levels. Metabolite profiling revealed that oxidative stress response pathways were altered and suggested an increase in DNA repair. Changes in metabolite levels in the tricarboxylic acid (TCA) cycle along with increased ATP are consistent with As(V)-enhanced growth of A. tumefaciens GW4. Lipidomics analysis revealed that most glycerophospholipids decreased in abundance when As(V) was available. However, several glycerolipid classes increased, an outcome that is consistent with maximizing growth via a phosphate-sparing phenotype. Differentially regulated lipids included phosphotidylcholine and lysophospholipids, which have not been previously reported in A. tumefaciens . The metabolites and lipids identified in this study deepen our understanding of the interplay between phosphate and arsenate on chemical and metabolic levels. IMPORTANCE Arsenic is widespread in the environment and is one of the most ubiquitous environmental pollutants. Parodoxically, the growth of certain bacteria is enhanced by arsenic when phosphate is limited. Arsenate and phosphate are chemically similar, and this behavior is believed to represent a phosphate-sparing phenotype in which arsenate is used in place of phosphate in certain biomolecules. The research presented here uses a global approach to track metabolic changes in an environmentally relevant bacterium during exposure to arsenate when phosphate is low. Our findings are relevant for understanding the environmental fate of arsenic as well as how human-associated microbiomes respond to this common toxin.  more » « less
Award ID(s):
1714556
PAR ID:
10285039
Author(s) / Creator(s):
; ; ; ; ; ; ;
Editor(s):
Atomi, Haruyuki
Date Published:
Journal Name:
Applied and Environmental Microbiology
Volume:
87
Issue:
6
ISSN:
0099-2240
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Mackelprang, Rachel (Ed.)
    ABSTRACT Microbial acclimation to different temperature conditions can involve broad changes in cell composition and metabolic efficiency. A systems-level view of these metabolic responses in nonmesophilic organisms, however, is currently missing. In this study, thermodynamically constrained genome-scale models were applied to simulate the metabolic responses of a deep-sea psychrophilic bacterium, Shewanella psychrophila WP2, under suboptimal (4°C), optimal (15°C), and supraoptimal (20°C) growth temperatures. The models were calibrated with experimentally determined growth rates of WP2. Gibbs free energy change of reactions (Δ r G ′), metabolic fluxes, and metabolite concentrations were predicted using random simulations to characterize temperature-dependent changes in the metabolism. The modeling revealed the highest metabolic efficiency at the optimal temperature, and it suggested distinct patterns of ATP production and consumption that could lead to lower metabolic efficiency under suboptimal or supraoptimal temperatures. The modeling also predicted rearrangement of fluxes through multiple metabolic pathways, including the glycolysis pathway, Entner-Doudoroff pathway, tricarboxylic acid (TCA) cycle, and electron transport system, and these predictions were corroborated through comparisons to WP2 transcriptomes. Furthermore, predictions of metabolite concentrations revealed the potential conservation of reducing equivalents and ATP in the suboptimal temperature, consistent with experimental observations from other psychrophiles. Taken together, the WP2 models provided mechanistic insights into the metabolism of a psychrophile in response to different temperatures. IMPORTANCE Metabolic flexibility is a central component of any organism’s ability to survive and adapt to changes in environmental conditions. This study represents the first application of thermodynamically constrained genome-scale models in simulating the metabolic responses of a deep-sea psychrophilic bacterium to various temperatures. The models predicted differences in metabolic efficiency that were attributed to changes in metabolic pathway utilization and metabolite concentration during growth under optimal and nonoptimal temperatures. Experimental growth measurements were used for model calibration, and temperature-dependent transcriptomic changes corroborated the model-predicted rearrangement of metabolic fluxes. Overall, this study highlights the utility of modeling approaches in studying the temperature-driven metabolic responses of an extremophilic organism. 
    more » « less
  2. Summary In environments where arsenic and microbes coexist, microbes are the principal drivers of arsenic speciation, which directly affects bioavailability, toxicity and bioaccumulation. Speciation reactions influence arsenic behaviour in environmental systems, directly affecting human and agricultural exposures. Arsenite oxidation decreases arsenic toxicity and mobility in the environment, and therefore understanding its regulation and overall influence on cellular metabolism is of significant interest. The arsenite oxidase (AioBA) is regulated by a three‐component signal transduction system AioXSR, which is in turn regulated by the phosphate stress response, with PhoR acting as the master regulator. Using RNA‐sequencing, we characterized the global effects of arsenite on gene expression inAgrobacterium tumefaciens5A. To further elucidate regulatory controls, mutant strains for histidine kinases PhoR and AioS were employed, and illustrate that in addition to arsenic metabolism, a host of other functional responses are regulated in parallel. Impacted functions include arsenic and phosphate metabolism, carbohydrate metabolism, solute transport systems and iron metabolism, in addition to others. These findings contribute significantly to the current understanding of the metabolic impact and genetic circuitry involved during arsenite exposure in bacteria. This informs how arsenic contamination will impact microbial activities involving several biogeochemical cycles in nature. 
    more » « less
  3. null (Ed.)
    The microbial ars operon encodes the primary bacterial defense response to the environmental toxicant, arsenic. An important component of this operon is the arsR gene, which encodes ArsR, a member of the family of proteins categorized as DNA-binding transcriptional repressors. As currently documented, ArsR regulates its own expression as well as other genes in the same ars operon. This study examined the roles of four ArsR proteins in the well-developed model Gram-negative bacterium Agrobacterium tumefaciens 5A. RNASeq was used to compare and characterize gene expression profiles in ± arsenite-treated cells of the wild-type strain and in four different arsR mutants. We report that ArsR-controlled transcription regulation is truly global, extending well beyond the current ars operon model, and includes both repression as well as apparent activation effects. Many cellular functions are significantly influenced, including arsenic resistance, phosphate acquisition/metabolism, sugar transport, chemotaxis, copper tolerance, iron homeostasis, and many others. While there is evidence of some regulatory overlap, each ArsR exhibits its own regulatory profile. Furthermore, evidence of a regulatory hierarchy was observed; i.e. ArsR1 represses arsR4 , ArsR4 activates arsR2 , and ArsR2 represses arsR3 . Additionally and unexpectedly, aioB (arsenite oxidase small subunit) expression was shown to be under partial positive control by ArsR2 and ArsR4. Summarizing, this study demonstrates the regulatory portfolio of arsenite-activated ArsR proteins and includes essentially all major cellular functions. The broad bandwidth of arsenic effects on microbial metabolism assists in explaining and understanding the full impact of arsenic in natural ecosystems, including the mammalian gut. 
    more » « less
  4. Some arsenite [As(III)]-oxidizing bacteria exhibit positive chemotaxis towards As(III), however, the related As(III) chemoreceptor and regulatory mechanism remain unknown. The As(III)-oxidizing bacterium Agrobacterium tumefaciens GW4 displays positive chemotaxis towards 0.5–2 mM As(III). Genomic analyses revealed a putative chemoreceptor-encoding gene, mcp, located in the arsenic gene island and having a predicted promoter binding site for the As(III) oxidation regulator AioR. Expression of mcp and other chemotaxis related genes (cheA, cheY2 and fliG) was inducible by As(III), but not in the aioR mutant. Using capillary assays and intrinsic tryptophan fluorescence spectra analysis, Mcp was confirmed to be responsible for chemotaxis towards As(III) and to bind As(III) (but not As(V) nor phosphate) as part of the sensing mechanism. A bacterial one-hybrid system technique and electrophoretic mobility shift assays showed that AioR interacts with the mcp regulatory region in vivo and in vitro, and the precise AioR binding site was confirmed using DNase I foot-printing. Taken together, these results indicate that this Mcp is responsible for the chemotactic response towards As(III) and is regulated by AioR. Additionally, disrupting the mcp gene affected bacterial As(III) oxidation and growth, inferring that Mcp may exert some sort of functional connection between As(III) oxidation and As(III) chemotaxis. 
    more » « less
  5. Ferrocene (Fc)/ferrocenium (Fc+)-decorated carbon nanotube electrode materials have shown promise for selectively adsorbing arsenic (As) over dissimilar anions like Cl– and ClO4–, and isostructural transition-metal oxyanions for water remediation; however, the competition between same-group oxyanions (such as arsenate vs phosphate) is underexplored and poorly understood. We use ab initio calculations to examine the competitive binding of As(V), P(V), and As(III) to Fc/Fc+ with and without functional substitutions (OH, SH, NH2, COOH, CH3, C2H5, NO2, and Cl). This work aims to understand factors that induce the selective binding of toxic arsenic over phosphate. We find that neat Fc cannot distinguish the three oxyanions because physical forces (electrostatics and dispersion) dominate the Fc-oxyanion interactions. However, combined oxidation and substitution effects enable selectivity for As(V) over P(V). Oxidation of Fc to Fc+ allows the formation of Fc+-oxyanion covalent bonds with varying donor–acceptor character depending on the oxyanion. Additionally, NH2 and SH groups that donate charge to the base Fc+ molecule and H-bond to oxyanion induce an energetic preference for As(V) over P(V) by −0.23 and −0.13 eV, respectively. Differences in pKa between As(V)/P(V) and As(III) preclude any preference for As(III) over the other anions. Using the calculated energetics, we predict the pH-dependent binding selectivity of functionalized ferrocenium. These findings demonstrate the challenges of Fc/Fc+-oxyanion interaction for selective binding and provide a path for identifying other molecules and substituents for efficient metallocene adsorbent design. 
    more » « less