skip to main content


Title: Laboratory Evaluation of Static and Dynamic Sag in Oil-Based Drilling Fluids
Summary In this paper, we present the results of barite sag measurements before and after hot-rolled oil-based drilling fluids (OBDFs) using different approaches for characterization. We characterized the barite sag of a liquid column under static condition using light-scattering (LS) measurements, hydrostatic pressure measurements, and gamma densitometry. Under the dynamic condition, we used a rheometer with a grooved bob-in-cup measuring system to characterize barite sag in rotational and oscillatory shear conditions. Extensive rheological characterization of the drilling fluid samples, before hot rolling (BHR) and after hot rolling (AHR), is carried out. It is found that barite sag decreased in hot-rolled fluid samples from the LS, rotational, and oscillatory shear measurements. The rheological characterization of the fluid samples showed that heat-activated chemicals in the hot-rolled fluid sample increased the viscosity and elasticity, which contributed to lower barite sag and longer suspension of particles than BHR. Both hydrostatic and gamma densitometry measurements reveal more or less uniform compaction of barite particles in the fluid sample below the liquid layer. Time-dependent oscillatory shear measurements provide new insights on the structural character of drilling fluids to predict barite sag tendencies during the fluid design phase.  more » « less
Award ID(s):
1743794
PAR ID:
10285059
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
SPE Journal
Volume:
26
Issue:
03
ISSN:
1086-055X
Page Range / eLocation ID:
1072 to 1091
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Controlling the downhole pressure is an important parameter for successful and safe operation of the drilling operation. The drilling fluid density is an important design parameter for preventing the fluid formation and gas entering the wellbore. Several types of weighting agents, barite in the present work, are added to maintain the desired density of the drilling fluid. The uneven density distribution of the barite, which can lead to a density variation as high as 0.5 kg/L (4 lbs/gal) (Tehrani et al. 2011), is caused by the settlement of barite or other weighting materials in the well bore. This paper presents the rheological properties of the drilling fluid measured using a rheometer and estimated rates of barite particle settlement in an oil-based drilling fluid using gamma-ray densitometry for the first time. Experiments were performed in a static cell (with no shear) and in a Taylor Couette cell (with low shear stress). Further, an attempt has also been made to relate the rate of barite particle settling to the rheological properties of the drilling fluid. 
    more » « less
  2. Controlling the downhole pressure is an important parameter for successful and safe drilling operations. Several types of weighting agents (i.e., high-density particles), traditionally barite particles, are added to maintain the desired density of the drilling fluid (DF). The DF density is an important design parameter for preventing multiple drilling complications. These issues are caused by the settling of the dense particles, an undesired phenomenon also referred to as sagging. Therefore, there is a need to understand the settling characteristics of heavy particles in such scenarios. To this end, simultaneous measurements of liquid phase flow patterns and particle settling velocities have been conducted in a Taylor-Couette (TC) cell with a rotating inner cylinder and stationary outer cylinder separated by an annular gap of 9.0 mm. Liquid flow patterns and particle settling velocities have been measured using particle image velocimetry (PIV) and particle tracking velocimetry (PTV) techniques, respectively. Experiments have been performed by varying the rotational speed of the inner cylinder up to 200 rev/min, which is used in normal drilling operations. Spherical particles with diameters of 3.0 mm or 4.0 mm and densities between 1.2 g/cm3 and 3.95 g/cm3 were used. The liquid phases studied included deionized (DI) water and mineral oil, which are the basic components of a non-Newtonian DF with a shear-thinning viscosity. The DF is a mud-like emulsion of opaque appearance, which impedes the ability to observe the liquid flow field and particle settling in the TC cell. To address this issue, a solution of carboxymethyl cellulose (CMC) with a 6% weight concentration in DI water was used. This non-Newtonian solution displays shear-thinning rheological behavior and was used as a transparent alternative to the opaque DF. For water, PIV results have shown wavy vortex flow (WVF) to turbulent Taylor vortex flow (TTVF), which agrees with the flow patterns reported in the literature. For mineral oil, circular Couette flow (CCF) was observed at up to 100 rev/min and vortex formation at 200 rev/min. For CMC, no vortex formation was observed up to 200 rev/min, only CCF. The settling velocities for all particles in water matched with the particle settling velocities predicted using the Basset-Boussinesq-Oseen (BBO) equation of motion. For mineral oil and CMC, the results did not match well with the predicted settling velocities, especially for heavy particles due possibly to the radial particle migration and interactions with the outer cylinder wall. 
    more » « less
  3. Aqueous foams are ubiquitous; they appear in products and processes that span the cosmetics, food, and energy industries. The versatile applicability of foams comes as a result of their intrinsic viscous and elastic properties; for example, foams are exploited as drilling fluids in enhanced oil recovery for their high viscosity. Recently, so-called capillary foams were discovered: a class of foams that have excellent stability under static conditions and whose flow properties have so far remained unexplored. The unique architecture of these foams, containing oil-coated bubbles and a gelled network of oil-bridged particles, is expected to affect foam rheology. In this work, we report the first set of rheological data on capillary foams. We study the viscoelastic properties of capillary foams by conducting oscillatory and steady shear tests. We compare our results on the rheological properties of capillary foams to those reported for other aqueous foams. We find that capillary foams, which have low gas volume fractions, exhibit long lasting rheological stability as well as a yielding behavior that is reminiscent of surfactant foams with high gas volume fractions. 
    more » « less
  4. Bacterial suspensions—a premier example of active fluids—show an unusual response to shear stresses. Instead of increasing the viscosity of the suspending fluid, the emergent collective motions of swimming bacteria can turn a suspension into a superfluid with zero apparent viscosity. Although the existence of active superfluids has been demonstrated in bulk rheological measurements, the microscopic origin and dynamics of such an exotic phase have not been experimentally probed. Here, using high-speed confocal rheometry, we study the dynamics of concentrated bacterial suspensions under simple planar shear. We find that bacterial superfluids under shear exhibit unusual symmetric shear bands, defying the conventional wisdom on shear banding of complex fluids, where the formation of steady shear bands necessarily breaks the symmetry of unsheared samples. We propose a simple hydrodynamic model based on the local stress balance and the ergodic sampling of nonequilibrium shear configurations, which quantitatively describes the observed symmetric shear-banding structure. The model also successfully predicts various interesting features of swarming vortices in stationary bacterial suspensions. Our study provides insights into the physical properties of collective swarming in active fluids and illustrates their profound influences on transport processes. 
    more » « less
  5. Verzicco, R. (Ed.)
    We present the first detailed thermal and velocity field characterization of convection in a rotating cylindrical tank of liquid gallium, which has thermophysical properties similar to those of planetary core fluids. Our laboratory experiments, and a closely associated direct numerical simulation, are all carried out in the regime prior to the onset of steady convective modes. This allows us to study the oscillatory convective modes, sidewall modes and broadband turbulent flow that develop in liquid metals before the advent of steady columnar modes. Our thermo-velocimetric measurements show that strongly inertial, thermal wind flows develop, with velocities reaching those of non-rotating cases. Oscillatory bulk convection and wall modes coexist across a wide range of our experiments, along with strong zonal flows that peak in the Stewartson layer, but that extend deep into the fluid bulk in the higher supercriticality cases. The flows contain significant time-mean helicity that is anti-symmetric across the midplane, demonstrating that oscillatory liquid metal convection contains the kinematic components to sustain system-scale dynamo generation. 
    more » « less