- Award ID(s):
- 1743794
- PAR ID:
- 10562615
- Publisher / Repository:
- SPE Journal
- Date Published:
- Journal Name:
- SPE Journal
- Volume:
- 29
- Issue:
- 06
- ISSN:
- 1086-055X
- Page Range / eLocation ID:
- 2920 to 2937
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
null (Ed.)Flow of a semidilute neutrally buoyant and non-colloidal suspension is numerically studied in the Taylor–Couette geometry where the inner cylinder is rotating and the outer one is stationary. We consider a suspension with bulk particle volume fraction ${\phi _b} = 0.1$ , the radius ratio $(\eta = {r_i}/{r_o} = 0.877)$ and two particle size ratios $\mathrm{\epsilon }\,( = \; d\textrm{/}a) = 60,\;200$ , where d is the gap width ( $= {r_o} - {r_i}$ ) between cylinders, a is the suspended particles’ radius and $r_i$ and $r_o$ are the inner and outer radii of the cylinder, respectively. Numerical simulations are conducted using the suspension balance model (SBM) and rheological constitutive laws. We predict the critical Reynolds number in which counter-rotating vortices arise in the annulus. It turns out that the primary instability appears through a supercritical bifurcation. For the suspension of $\mathrm{\epsilon } = 200$ , the circular Couette flow (CCF) transitions via Taylor vortex flow (TVF) to wavy vortex flow (WVF). Additional flow states of non-axisymmetric vortices, namely spiral vortex flow (SVF) and wavy spiral vortex flow (WSVF) are observed between CCF and WVF for the suspension of $\mathrm{\epsilon } = 60$ ; thus, the transitions occur following the sequence of CCF → SVF → WSVF → WVF. Furthermore, we estimate the friction and torque coefficients of the suspension. Suspended particles substantially enhance the torque on the inner cylinder, and the axial travelling wave of spiral vortices reduces the friction and torque coefficients. However, the coefficients are practically the same in the WVF regime where particles are almost uniformly distributed in the annulus by the axial oscillating flow.more » « less
-
Abstract Arctic oil spills are particularly detrimental as they could cause extensive ice melting in addition to the environmental pollution they create. Floating oil slicks amongst ice floes absorb ambient energy and transfer that energy to the ice to aggravate melting in the thaw season. However, few studies have been undertaken to reveal how oil-ice interactions impact ice melting. This research employs a measurement technique to investigate the heat transfer pathways from oil slicks to the ice. Dual-luminescence imaging and particle imaging velocimetry (PIV) in a side cooled cavity is performed for temperature and velocity measurements of Toluene, respectively. Dual-luminescence imaging captured the spatial temperature distribution of the fuel. Consecutive imaging of the seeding particles in PIV provided the spatial velocity field of the fuel in the cavity. The results show that the convective field is directly coupled with the temperature field, i.e., the temperature difference instigates a flow in the liquid. Successful implementation of the two measuring techniques together is a step toward analyzing heat transfer pathways in a liquid fuel adjacent to an ice body, indicating the extent of melting.
-
Arctic oil spills are particularly detrimental as they could cause extensive ice melting in addition to the environmental pollution they create. Floating oil slicks amongst ice floes absorb ambient energy and transfer that energy to the ice to aggravate melting in the thaw season. However, few studies have been undertaken to reveal how oil-ice interactions impact ice melting. This research employs a measurement technique to investigate the heat transfer pathways from oil slicks to the ice. Dual-luminescence imaging and particle imaging velocimetry (PIV) in a side cooled cavity is performed for temperature and velocity measurements of Toluene, respectively. Dual-luminescence imaging captured the spatial temperature distribution of the fuel. Consecutive imaging of the seeding particles in PIV provided the spatial velocity field of the fuel in the cavity. The results show that the convective field is directly coupled with the temperature field, i.e., the temperature difference instigates a flow in the liquid. Successful implementation of the two measuring techniques together is a step toward analyzing heat transfer pathways in a liquid fuel adjacent to an ice body, indicating the extent of melting.more » « less
-
Arctic oil spills are particularly detrimental as they cause extensive ice melting in addition to the environmental pollution they create. However, few studies have been undertaken to reveal how oil-ice interactions impact ice melting. A simultaneous measurement method is developed to investigate the heat transfer pathways from oil slicks to ice. Functional luminescent probes are dissolved in a liquid immiscible with water, which imitates spilled oil. Another luminescent probe is added to seeding particles in order to increase their luminescent intensity. Dual-luminescence imaging and particle imaging velocimetry (PIV) are combined into a single simultaneous measurement method. The developed measurement system shows simultaneous temperature and velocity measurements for natural convection of the immiscible liquid. Successful implementation of the two measurement techniques together is a step toward analyzing heat transfer pathways in a spilled oil adjacent to an ice body, which indicates the extent of melting.more » « less
-
Abstract We investigate the feasibility of in-laboratory tomographic X-ray particle tracking velocimetry (TXPTV) and consider creeping flows with nearly density matched flow tracers. Specifically, in these proof-of-concept experiments we examined a Poiseuille flow, flow through porous media and a multiphase flow with a Taylor bubble. For a full 360
computed tomography (CT) scan we show that the specially selected 60 micron tracer particles could be imaged in less than 3 seconds with a signal-to-noise ratio between the tracers and the fluid of 2.5, sufficient to achieve proper volumetric segmentation at each time step. In the pipe flow, continuous Lagrangian particle trajectories were obtained, after which all the standard techniques used for PTV or PIV (taken at visible wave lengths) could also be employed for TXPTV data. And, with TXPTV we can examine flows inaccessible with visible wave lengths due to opaque media or numerous refractive interfaces. In the case of opaque porous media we were able to observe material accumulation and pore clogging, and for flow with Taylor bubble we can trace the particles and hence obtain velocities in the liquid film between the wall and bubble, with thickness of liquid film itself also simultaneously obtained from the volumetric reconstruction after segmentation. While improvements in scan speed are anticipated due to continuing improvements in CT system components, we show that for the flows examined even the presently available CT systems could yield quantitative flow data with the primary limitation being the quality of available flow tracers.$$^\circ$$ Graphic abstract