Spatially varying alignment of liquid crystals is essential for research and applications. One widely used method is based on the photopatterning of thin layers of azo-dye molecules, such as Brilliant Yellow (BY), that serve as an aligning substrate for a liquid crystal. In this study, we examine how photopatterning conditions, such as BY layer thickness (b), light intensity (I), irradiation dose, and age affect the alignment quality and the strength of the azimuthal surface anchoring. The azimuthal surface anchoring coefficient, W, is determined by analyzing the splitting of integer disclinations into half-integer disclinations at prepatterned substrates. The strongest anchoring is achieved for b in the range of 5–8 nm. W increases with the dose, and within the same dose, W increases with I. Aging of a non-irradiated BY coating above 15 days reduces W. Our study also demonstrates that sealed photopatterned cells filled with a conventional nematic preserve their alignment quality for up to four weeks, after which time W decreases. This work suggests the optimization pathways for photoalignment of nematic liquid crystals.
more »
« less
Azimuthal Anchoring Strength in Photopatterned Alignment of a Nematic
Spatially-varying director fields have become an important part of research and development in liquid crystals. Characterization of the anchoring strength associated with a spatially-varying director is difficult, since the methods developed for a uniform alignment are seldom applicable. Here we characterize the strength of azimuthal surface anchoring produced by the photoalignment technique based on plasmonic metamsaks. The measurements used photopatterned arrays of topological point defects of strength +1 and −1 in thin layers of a nematic liquid crystal. The integer-strength defects split into pairs of half-integer defects with lower elastic energy. The separation distance between the split pair is limited by the azimuthal surface anchoring, which allows one to determine the strength of the latter. The strength of the azimuthal anchoring is proportional to the UV exposure time during the photoalignment of the azobenzene layer.
more »
« less
- Award ID(s):
- 1663394
- PAR ID:
- 10285071
- Date Published:
- Journal Name:
- Crystals
- Volume:
- 11
- Issue:
- 6
- ISSN:
- 2073-4352
- Page Range / eLocation ID:
- 675
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Nematic cells patterned with square arrays of strength m = ±1 topological defects were examined as a function of cell thickness (3 < h < 7.5 μm), temperature, and applied voltage. Thicker cells tend to exhibit an escape or partial escape of the nematic director as a means of mitigating the elastic energy cost near the defect cores, whereas thinner cells tend to favor splitting of the integer defects into pairs of half-integer strength defects. On heating the sample into the isotropic phase and cooling back into the nematic, some apparently split defects can reappear as unsplit integer defects, or vice versa. This is consistent with the system’s symmetry, which requires a first order transition between the two relaxation mechanisms.more » « less
-
An escaped radial director profile in a nematic liquid crystal cell can be transformed into a pair of strength m = +1/2 surface defects (and their associated disclination lines) at a threshold electric field. Analogously, a half-integer defect pair can be transformed at a threshold electric field into a director profile that escapes into the third dimension. These transitions were demonstrated experimentally and numerically, and are discussed in terms of topologically discontinuous and continuous pathways that connect the two states. Additionally, we note that the pair of disclination lines associated with the m = +1/2 surface defects were observed to co-rotate around a common point for a sufficiently large electric field at a sufficiently low frequency.more » « less
-
We study two dimensional tactoids in nematic liquid crystals by using a Q -tensor representation. A bulk free energy of the Maier–Saupe form with eigenvalue constraints on Q , plus elastic terms up to cubic order in Q are used to understand the effects of anisotropic anchoring and Frank–Oseen elasticity on the morphology of nematic–isotropic domains. Further, a volume constraint is introduced to stabilize tactoids of any size at coexistence. We find that anisotropic anchoring results in differences in interface thickness depending on the relative orientation of the director at the interface, and that interfaces become biaxial for tangential alignment when anisotropy is introduced. For negative tactoids, surface defects induced by boundary topology become sharper with increasing elastic anisotropy. On the other hand, by parametrically studying their energy landscape, we find that surface defects do not represent the minimum energy configuration in positive tactoids. Instead, the interplay between Frank–Oseen elasticity in the bulk, and anisotropic anchoring yields semi-bipolar director configurations with non-circular interface morphology. Finally, we find that for growing tactoids the evolution of the director configuration is highly sensitive to the anisotropic term included in the free energy, and that minimum energy configurations may not be representative of kinetically obtained tactoids at long times.more » « less
-
Liquid crystal elastomers (LCEs) hold a major promise as a versatile material platform for smart soft coatings since their orientational order can be predesigned to program a desired dynamic profile. In this work, we introduce temperature-responsive dynamic coatings based on LCEs with arrays of singular defects-disclinations that run parallel to the surface. The disclinations form in response to antagonistic patterns of the molecular orientation at the top and bottom surfaces, imposed by the plasmonic mask photoalignment. Upon heating, an initially flat LCE coating develops linear microchannels located above each disclination. The stimulus that causes a non-flat profile of LCE coatings upon heating is the activation force induced by the gradients of molecular orientation around disclinations. To describe the formation of microchannels and their thermal response, we adopt a Frank–Oseen model of disclinations in a patterned director field and propose a linear elasticity theory to connect the complex spatially varying molecular orientation to the displacements of the LCE. The thermo-responsive surface profiles predicted by the theory and by the finite element modeling are in good agreement with the experimental data; in particular, higher gradients of molecular orientation produce a stronger modulation of the coating profile. The elastic theory and the finite element simulations allow us to estimate the material parameter that characterizes the elastomer coating's response to the thermal activation. The disclination-containing LCEs show potential as soft dynamic coatings with a predesigned responsive surface profile.more » « less
An official website of the United States government

