skip to main content


Title: A deep study of the high–energy transient sky
Abstract The coming decades will establish the exploration of the gravitational wave (GW) Universe over a broad frequency range by ground and space interferometers. Meanwhile, wide-field, high-cadence and sensitive surveys will span the electromagnetic spectrum from radio all the way up to TeV, as well as the high-energy neutrino window. Among the numerous classes of transients, γ –ray bursts (GRBs) have direct links with most of the hot topics that will be addressed, such as the strong gravity regime, relativistic shocks, particle acceleration processes, equation of state of matter at nuclear density, and nucleosynthesis of heavy elements, just to mention a few. Other recently discovered classes of transients that are observed throughout cosmological distances include fast radio bursts (FRBs), fast blue optical transients (FBOTs), and other unidentified high-energy transients. Here we discuss how these topics can be addressed by a mission called ASTENA (Advanced Surveyor of Transient Events and Nuclear Astrophysics, see Frontera et al. 18). Its payload combines two instruments: (i) an array of wide-field monitors with imaging, spectroscopic, and polarimetric capabilities (WFM-IS); (ii) a narrow field telescope (NFT) based on a Laue lens operating in the 50–600 keV range with unprecedented angular resolution, polarimetric capabilities, and sensitivity.  more » « less
Award ID(s):
1944985
NSF-PAR ID:
10285091
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; « less
Date Published:
Journal Name:
Experimental Astronomy
ISSN:
0922-6435
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We report the discovery and follow-up observations of VT 1137–0337, an unusual radio transient found in our systematic search for extragalactic explosions in the Very Large Array Sky Survey. It is located in the brightest region of a dwarf starburst galaxy at a luminosity distance of 121.6 Mpc. Its 3 GHz luminosity is comparable to luminous radio supernovae associated with dense circumstellar interaction and relativistic outflows. However, its broadband radio spectrum—proportional toν−0.35over a range of ≳10× in frequency and fading at a rate of 5% yr–1—cannot be directly explained by the shock of a stellar explosion. Jets launched by various classes of accreting black holes also struggle to account for VT 1137–0337's combination of observational properties. Instead, we propose that VT 1137–0337 is a decades-old pulsar wind nebula that has recently emerged from within the free–free opacity of its surrounding supernova ejecta. If the nebula is powered by spin-down, the central neutron star should have a surface dipole field of ∼1013–1014G and a present-day spin period of ∼10–100 ms. Alternatively, the nebula may be powered by the release of magnetic energy from a magnetar. Magnetar nebulae have been proposed to explain the persistent radio sources associated with the repeating fast radio bursts FRB 121102 and FRB 190520B. These FRB persistent sources have not previously been observed as transients but do bear a striking resemblance to VT 1137–0337 in their radio luminosity, spectral index, and host galaxy properties.

     
    more » « less
  2. Abstract

    Hypernebulae are inflated by accretion-powered winds accompanying hyper-Eddington mass transfer from an evolved post-main-sequence star onto a black hole or neutron star companion. The ions accelerated at the termination shock—where the collimated fast disk winds and/or jet collide with the slower, wide-angled wind-fed shell—can generate high-energy neutrinos via hadronic proton–proton reactions, and photohadronic (pγ) interactions with the disk thermal and Comptonized nonthermal background photons. It has been suggested that some fast radio bursts (FRBs) may be powered by such short-lived jetted hyper-accreting engines. Although neutrino emission associated with the millisecond duration bursts themselves is challenging to detect, the persistent radio counterparts of some FRB sources—if associated with hypernebulae—could contribute to the high-energy neutrino diffuse background flux. If the hypernebula birth rate follows that of stellar-merger transients and common envelope events, we find that their volume-integrated neutrino emission—depending on the population-averaged mass-transfer rates—could explain up to ∼25% of the high-energy diffuse neutrino flux observed by the IceCube Observatory and the Baikal Gigaton Volume Detector Telescope. The time-averaged neutrino spectrum from hypernebula—depending on the population parameters—can also reproduce the observed diffuse neutrino spectrum. The neutrino emission could in some cases furthermore extend to >100 PeV, detectable by future ultra-high-energy neutrino observatories. The large optical depth through the nebula to Breit–Wheeler (γγ) interaction attenuates the escape of GeV–PeV gamma rays coproduced with the neutrinos, rendering these gamma-ray-faint neutrino sources, consistent with the Fermi observations of the isotropic gamma-ray background.

     
    more » « less
  3. Abstract The Murchison Widefield Array (MWA) is an electronically steered low-frequency (<300 MHz) radio interferometer, with a ‘slew’ time less than 8 s. Low-frequency (∼100 MHz) radio telescopes are ideally suited for rapid response follow-up of transients due to their large field of view, the inverted spectrum of coherent emission, and the fact that the dispersion delay between a 1 GHz and 100 MHz pulse is on the order of 1–10 min for dispersion measures of 100–2000 pc/cm 3 . The MWA has previously been used to provide fast follow-up for transient events including gamma-ray bursts (GRBs), fast radio bursts (FRBs), and gravitational waves, using systems that respond to gamma-ray coordinates network packet-based notifications. We describe a system for automatically triggering MWA observations of such events, based on Virtual Observatory Event standard triggers, which is more flexible, capable, and accurate than previous systems. The system can respond to external multi-messenger triggers, which makes it well-suited to searching for prompt coherent radio emission from GRBs, the study of FRBs and gravitational waves, single pulse studies of pulsars, and rapid follow-up of high-energy superflares from flare stars. The new triggering system has the capability to trigger observations in both the regular correlator mode (limited to ≥0.5 s integrations) and using the Voltage Capture System (VCS, 0.1 ms integration) of the MWA and represents a new mode of operation for the MWA. The upgraded standard correlator triggering capability has been in use since MWA observing semester 2018B (July–Dec 2018), and the VCS and buffered mode triggers will become available for observing in a future semester. 
    more » « less
  4. null (Ed.)
    ABSTRACT Rapidly evolving transients (RETs), also termed fast blue optical transients, are a recently discovered group of astrophysical events that display rapid luminosity evolution. RETs typically rise to peak in less than 10 d and fade within 30, a time-scale unlikely to be compatible with the decay of Nickel-56 that drives conventional supernovae (SNe). Their peak luminosity spans a range of −15 < Mg < −22.5, with some events observed at redshifts greater than 1. Their evolution on fast time-scales has hindered high-quality follow-up observations, and thus their origin and explosion/emission mechanism remains unexplained. In this paper, we present the largest sample of RETs to date, comprising 106 objects discovered by the Dark Energy Survey, and perform the most comprehensive analysis of RET host galaxies. Using deep-stacked photometry and emission lines from OzDES spectroscopy, we derive stellar masses and star formation rates (SFRs) for 49 host galaxies, and metallicities ([O/H]) for 37. We find that RETs explode exclusively in star-forming galaxies and are thus likely associated with massive stars. Comparing RET hosts to samples of host galaxies of other explosive transients as well as field galaxies, we find that RETs prefer galaxies with high specific SFRs (〈log (sSFR)〉 ∼ −9.6), indicating a link to young stellar populations, similar to stripped-envelope SNe. RET hosts appear to show a lack of chemical enrichment, their metallicities akin to long-duration gamma-ray bursts and superluminous SN host galaxies (〈12 + log (O/H)〉 ∼ 9.4). There are no clear relationships between mass or SFR of the host galaxies and the peak magnitudes or decline rates of the transients themselves. 
    more » « less
  5. Abstract

    We present a detailed compilation and analysis of the X-ray phase space of low- to intermediate-redshift (0 ≤z≤ 1) transients that consolidates observed light curves (and theory where necessary) for a large variety of classes of transient/variable phenomena in the 0.3–10 keV energy band. We include gamma-ray burst afterglows, supernovae, supernova shock breakouts and shocks interacting with the environment, tidal disruption events and active galactic nuclei, fast blue optical transients, cataclysmic variables, magnetar flares/outbursts and fast radio bursts, cool stellar flares, X-ray binary outbursts, and ultraluminous X-ray sources. Our overarching goal is to offer a comprehensive resource for the examination of these ephemeral events, extending the X-ray duration–luminosity phase space (DLPS) to show luminosity evolution. We use existing observations (both targeted and serendipitous) to characterize the behavior of various transient/variable populations. Contextualizing transient signals in the larger DLPS serves two primary purposes: to identify areas of interest (i.e., regions in the parameter space where one would expect detections, but in which observations have historically been lacking), and to provide initial qualitative guidance in classifying newly discovered transient signals. We find that while the most luminous (largely extragalactic) and least luminous (largely Galactic) part of the phase space is well populated att> 0.1 days, intermediate-luminosity phenomena (LX= 1034–1042erg s−1) represent a gap in the phase space. We thus identifyLX= 1034–1042erg s−1andt= 10−4to 0.1 days as a key discovery phase space in transient X-ray astronomy.

     
    more » « less