skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: MPCast: A Novel Downlink Transmission Technology for Low Power Wide Area Networks
In this paper, MPCast, a novel wireless transmission technology for the downlink of Low Power Wide Area Networks (LPWAN), is proposed. MPCast modulates data on the Zadoff-Chu (ZC) sequence, which generates a peak at the receiving side. Both the location and phase of the peak carry information. Also, multiple peaks are transmitted simultaneously at different power levels to be received by nodes with different channel conditions. A novel preamble design allows the nodes to detect the frame and synchronize with the AP at low computation complexity. MPCast has been validated with real-world experiments on the Powder platform. MPCast has also been evaluated with simulations under a challenging wireless channel model. The results show that MPCast achieves a physical layer data rate of 1.74 kbps in a 125 kHz channel when the Signal to Noise Ratio (SNR) is -7 dB, which is a 9 dB gain over LoRa SF 9.  more » « less
Award ID(s):
1910268
PAR ID:
10285182
Author(s) / Creator(s):
Date Published:
Journal Name:
ICC 2021 - IEEE International Conference on Communications
Page Range / eLocation ID:
1 to 6
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Full-duplex (FD) wireless and phased arrays are both promising techniques that can significantly improve data rates in future wireless networks. However, integrating FD with transmit (Tx) and receive (Rx) phased arrays is extremely challenging, due to the large number of self-interference (SI) channels. Previous work relies on either RF canceller hardware or on analog/digital Tx beamforming (TxBF) to achieve SI cancellation (SIC). However, Rx beamforming (RxBF) and the data rate gain introduced by FD nodes employing beamforming have not been considered yet. We study FD phased arrays with joint TxBF and RxBF with the objective of achieving improved FD data rates. The key idea is to carefully select the TxBF and RxBF weights to achieve wideband RF SIC in the spatial domain with minimal TxBF and RxBF gain losses. Essentially, TxBF and RxBF are repurposed, thereby not requiring specialized RF canceller circuitry. We formulate the corresponding optimization problem and develop an iterative algorithm to obtain an approximate solution with provable performance guarantees. Using SI channel measurements and datasets, we extensively evaluate the performance of the proposed approach in different use cases under various network settings. The results show that an FD phased array with 9/36/72 elements can cancel the total SI power to below the noise floor with sum TxBF and RxBF gain losses of 10.6/7.2/6.9 dB, even at Tx power level of 30 dBm. Moreover, the corresponding FD rate gains are at least 1.33/1.66/1.68× 
    more » « less
  2. Full-duplex (FD) wireless and phased arrays are both promising techniques that can significantly improve data rates in future wireless networks. However, integrating FD with transmit (Tx) and receive (Rx) phased arrays is extremely challenging, due to the large number of self-interference (SI) channels. Previous work relies on either RF canceller hardware or on analog/digital Tx beamforming (TxBF) to achieve SI cancellation (SIC). However, Rx beamforming (RxBF) and the data rate gain introduced by FD nodes employing beamforming have not been considered yet. We study FD phased arrays with joint TxBF and RxBF with the objective of achieving improved FD data rates. The key idea is to carefully select the TxBF and RxBF weights to achieve wideband RF SIC in the spatial domain with minimal TxBF and RxBF gain losses. Essentially, TxBF and RxBF are repurposed, thereby not requiring specialized RF canceller circuitry. We formulate the corresponding optimization problem and develop an iterative algorithm to obtain an approximate solution with provable performance guarantees. Using SI channel measurements and datasets, we extensively evaluate the performance of the proposed approach in different use cases under various network settings. The results show that an FD phased array with 9/36/72 elements can cancel the total SI power to below the noise floor with sum TxBF and RxBF gain losses of 10.6/7.2/6.9 dB, even at Tx power level of 30 dBm. Moreover, the corresponding FD rate gains are at least 1.33/1.66/1.68×. 
    more » « less
  3. Wireless backscattering has been deemed suitable for various emerging energy-constrained applications given its low-power architectures. Although existing backscatter nodes often operate at sub-6 GHz frequency bands, moving to the sub-THz bands offers significant advantages in scaling low-power connectivity to dense user populations; as concurrent transmissions can be separated in both spectral and spatial domains given the large swath of available bandwidth and laser-shaped beam directionality in this frequency regime. However, the power consumption and complexity of wireless devices increase significantly with frequency. In this paper, we present LeakyScatter, the first backscatter system that enables directional, low-power, and frequency-agile wireless links above 100 GHz. LeakyScatter departs from conventional backscatter designs and introduces a novel architecture that relies on aperture reciprocity in leaky-wave devices. We have fabricated LeakyScatter and evaluated its performance through extensive simulations and over-the-air experiments. Our results demonstrate a scalable wireless link above 100 GHz that is retrodirective and operates at a large bandwidth (tens of GHz) and ultra-low-power (zero power consumed for directional steering and ≤ 1 mW for data modulation). 
    more » « less
  4. We discuss the problem of designing channel access architectures for enabling fast, low-latency, grant-free and uncoordinated uplink for densely packed wireless nodes. Specifically, we extend the concept of random-access code introduced at ISIT’2017 by one of the authors to the practically more relevant case of the AWGN multiple-access channel (MAC) subject to Rayleigh fading, unknown to the decoder. We derive bounds on the fundamental limits of random-access coding and propose an alternating belief-propagation scheme as a candidate practical solution. The latter’s performance was found to be surprisingly close to the information-theoretic bounds. It is curious, thus, that while fading significantly increases the minimal required energy-per-bit Eb/N0 (from about 0-2 dB to about 8-11 dB), it appears that it is much easier to attain the optimal performance over the fading channel with a practical scheme by leveraging the inherent randomization introduced by the channel. Finally, we mention that while a number of candidate solutions (MUSA, SCMA, RSMA, etc.) are being discussed for the 5G, the information theoretic analysis and benchmarking has not been attempted before (in part due to lack of common random-access model). Our work may be seen as a step towards unifying performance comparisons of these methods. 
    more » « less
  5. ABSTRACT LoRa has emerged as one of the main candidates for connecting low-power wireless IoT devices. Packet collisions occur in LoRa networks when multiple nodes transmit wireless signals simultaneously. In this paper, a novel solution, referred to as TnB, is proposed to decode collided LoRa signals. Two major components of TnB are Thrive and Block Error Correction (BEC). Thrive is a simple algorithm to resolve collisions by assigning an observed signal to a node according to a matching cost that reflects the likelihood for the node to have transmitted the signal. BEC is a novel algorithm for decoding the Hamming code used in LoRa, and is capable of correcting more errors than the default decoder by jointly decoding multiple codewords. TnB does not need any modification of the LoRa nodes and can be adopted by simply replacing the gateway. TnB has been tested with real-world experimental traces collected with commodity LoRa devices, and the results show that TnB can increase the median throughput by 1.36× and 2.46× over the state-of-the-art for Spreading Factors (SF) 8 and 10, respectively. Simulations further show that the improvement is even higher under more challenging channel conditions. 
    more » « less