skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Scalable Objective-Driven Batch Sampling in Simulation-Based Design for Models With Heteroscedastic Noise
Abstract Objective-driven adaptive sampling is a widely used tool for the optimization of deterministic black-box functions. However, the optimization of stochastic simulation models as found in the engineering, biological, and social sciences is still an elusive task. In this work, we propose a scalable adaptive batch sampling scheme for the optimization of stochastic simulation models with input-dependent noise. The developed algorithm has two primary advantages: (i) by recommending sampling batches, the designer can benefit from parallel computing capabilities, and (ii) by replicating of previously observed sampling locations the method can be scaled to higher-dimensional and more noisy functions. Replication improves numerical tractability as the computational cost of Bayesian optimization methods is known to grow cubicly with the number of unique sampling locations. Deciding when to replicate and when to explore depends on what alternative minimizes the posterior prediction accuracy at and around the spatial locations expected to contain the global optimum. The algorithm explores a new sampling location to reduce the interpolation uncertainty and replicates to improve the accuracy of the mean prediction at a single sampling location. Through the application of the proposed sampling scheme to two numerical test functions and one real engineering problem, we show that we can reliably and efficiently find the global optimum of stochastic simulation models with input-dependent noise.  more » « less
Award ID(s):
1662509
PAR ID:
10285202
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Scalable Objective-Driven Batch Sampling in Simulation-Based Design for Models With Heteroscedastic Noise
Volume:
DETC2020-22629
Page Range / eLocation ID:
V11BT11A049
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract In this study, we propose a scalable batch sampling scheme for optimization of simulation models with spatially varying noise. The proposed scheme has two primary advantages: (i) reduced simulation cost by recommending batches of samples at carefully selected spatial locations and (ii) improved scalability by actively considering replicating at previously observed sampling locations. Replication improves the scalability of the proposed sampling scheme as the computational cost of adaptive sampling schemes grow cubicly with the number of unique sampling locations. Our main consideration for the allocation of computational resources is the minimization of the uncertainty in the optimal design. We analytically derive the relationship between the “exploration versus replication decision” and the posterior variance of the spatial random process used to approximate the simulation model’s mean response. Leveraging this reformulation in a novel objective-driven adaptive sampling scheme, we show that we can identify batches of samples that minimize the prediction uncertainty only in the regions of the design space expected to contain the global optimum. Finally, the proposed sampling scheme adopts a modified preposterior analysis that uses a zeroth-order interpolation of the spatially varying simulation noise to identify sampling batches. Through the optimization of three numerical test functions and one engineering problem, we demonstrate (i) the efficacy and of the proposed sampling scheme to deal with a wide array of stochastic functions, (ii) the superior performance of the proposed method on all test functions compared to existing methods, (iii) the empirical validity of using a zeroth-order approximation for the allocation of sampling batches, and (iv) its applicability to molecular dynamics simulations by optimizing the performance of an organic photovoltaic cell as a function of its processing settings. 
    more » « less
  2. Optimizing the performance of complex systems modeled by stochastic computer simulations is a challenging task, partly because of the lack of structural properties (e.g., convexity). This challenge is magnified by the presence of random error whereby an adaptive algorithm searching for better designs can at times mistakenly accept an inferior design. In contrast to performing multiple simulations at a design point to estimate the performance of the design, we propose a framework for adaptive search algorithms that executes a single simulation for each design point encountered. Here the estimation errors are reduced by averaging the performances from previously evaluated designs drawn from a shrinking ball around the current design point. We show under mild regularity conditions for continuous design spaces that the accumulated errors, although dependent, form a martingale process, and hence, by the strong law of large numbers for martingales, the average errors converge to zero as the algorithm proceeds. This class of algorithms is shown to converge to a global optimum with probability one. By employing a shrinking ball approach with single observations, an adaptive search algorithm can simultaneously improve the estimates of performance while exploring new and potentially better design points. Numerical experiments offer empirical support for this paradigm of single observation simulation optimization. 
    more » « less
  3. In networks consisting of agents communicating with a central coordinator and working together to solve a global optimization problem in a distributed manner, the agents are often required to solve private proximal minimization subproblems. Such a setting often requires a decomposition method to solve the global distributed problem, resulting in extensive communication overhead. In networks where communication is expensive, it is crucial to reduce the communication overhead of the distributed optimization scheme. Gaussian processes (GPs) are effective at learning the agents' local proximal operators, thereby reducing the communication between the agents and the coordinator. We propose combining this learning method with adaptive uniform quantization for a hybrid approach that can achieve further communication reduction. In our approach, due to data quantization, the GP algorithm is modified to account for the introduced quantization noise statistics. We further improve our approach by introducing an orthogonalization process to the quantizer's input to address the inherent correlation of the input components. We also use dithering to ensure uncorrelation between the quantizer's introduced noise and its input. We propose multiple measures to quantify the trade-off between the communication cost reduction and the optimization solution's accuracy/optimality. Under such metrics, our proposed algorithms can achieve significant communication reduction for distributed optimization with acceptable accuracy, even at low quantization resolutions. This result is demonstrated by simulations of a distributed sharing problem with quadratic cost functions for the agents. 
    more » « less
  4. Safe control designs for robotic systems remain challenging because of the difficulties of explicitly solving optimal control with nonlinear dynamics perturbed by stochastic noise. However, recent technological advances in computing devices enable online optimization or sampling-based methods to solve control problems. For example, Control Barrier Functions (CBFs) have been proposed to numerically solve convex optimization problems that ensure the control input to stay in the safe set. Model Predictive Path Integral (MPPI) control uses forward sampling of stochastic differential equations to solve optimal control problems online. Both control algorithms are widely used for nonlinear systems because they avoid calculating the derivatives of the nonlinear dynamic functions. In this paper, we use Stochastic Control Barrier Functions (SCBFs) constraints to limit sample regions in the samplingbased algorithm, ensuring safety in a probabilistic sense and improving sample efficiency with a stochastic differential equation. We also show that our algorithm needs fewer samples than the original MPPI algorithm does by providing a sampling complexity analysis. 
    more » « less
  5. Abstract Quantile is an important quantity in reliability analysis, as it is related to the resistance level for defining failure events. This study develops a computationally efficient sampling method for estimating extreme quantiles using stochastic black box computer models. Importance sampling has been widely employed as a powerful variance reduction technique to reduce estimation uncertainty and improve computational efficiency in many reliability studies. However, when applied to quantile estimation, importance sampling faces challenges, because a good choice of the importance sampling density relies on information about the unknown quantile. We propose an adaptive method that refines the importance sampling density parameter toward the unknown target quantile value along the iterations. The proposed adaptive scheme allows us to use the simulation outcomes obtained in previous iterations for steering the simulation process to focus on important input areas. We prove some convergence properties of the proposed method and show that our approach can achieve variance reduction over crude Monte Carlo sampling. We demonstrate its estimation efficiency through numerical examples and wind turbine case study. 
    more » « less