skip to main content


Title: A Functional Approach to Rotation Equivariant Non-Linearities for Tensor Field Networks
Learning pose invariant representation is a fundamental problem in shape analysis. Most existing deep learning algorithms for 3D shape analysis are not robust to rotations and are often trained on synthetic datasets consisting of pre-aligned shapes, yielding poor generalization to unseen poses. This observation motivates a growing interest in rotation invariant and equivariant methods. The field of rotation equivariant deep learning is developing in recent years thanks to a well established theory of Lie group representations and convolutions. A fundamental problem in equivariant deep learning is to design activation functions which are both informative and preserve equivariance. The recently introduced Tensor Field Network (TFN) framework provides a rotation equivariant network design for point cloud analysis. TFN features undergo a rotation in feature space given a rotation of the input pointcloud. TFN and similar designs consider nonlinearities which operate only over rotation invariant features such as the norm of equivariant features to preserve equivariance, making them unable to capture the directional information. In a recent work entitled "Gauge Equivariant Mesh CNNs: Anisotropic Convolutions on Geometric Graphs" Hann et al. interpret 2D rotation equivariant features as Fourier coefficients of functions on the circle. In this work we transpose the idea of Hann et al. to 3D by interpreting TFN features as spherical harmonics coefficients of functions on the sphere. We introduce a new equivariant nonlinearity and pooling for TFN. We show improvments over the original TFN design and other equivariant nonlinearities in classification and segmentation tasks. Furthermore our method is competitive with state of the art rotation invariant methods in some instances.  more » « less
Award ID(s):
1763268
NSF-PAR ID:
10285233
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Reasoning about 3D objects based on 2D images is challenging due to variations in appearance caused by viewing the object from different orientations. Tasks such as object classification are invariant to 3D rotations and other such as pose estimation are equivariant. However, imposing equivariance as a model constraint is typically not possible with 2D image input because we do not have an a priori model of how the image changes under out-of-plane object rotations. The only SO(3)-equivariant models that currently exist require point cloud or voxel input rather than 2D images. In this paper, we propose a novel architecture based on icosahedral group convolutions that reasons in SO(3) by learning a projection of the input image onto an icosahedron. The resulting model is approximately equivariant to rotation in SO(3). We apply this model to object pose estimation and shape classification tasks and find that it outperforms reasonable baselines. 
    more » « less
  2. null (Ed.)
    Designing an incentive compatible auction that maximizes expected revenue is a central problem in Auction Design. Theoretical approaches to the problem have hit some limits in the past decades and analytical solutions are known for only a few simple settings. Computational approaches to the problem through the use of LPs have their own set of limitations. Building on the success of deep learning, a new approach was recently proposed by Duetting et al. (2019) in which the auction is modeled by a feed-forward neural network and the design problem is framed as a learning problem. The neural architectures used in that work are general purpose and do not take advantage of any of the symmetries the problem could present, such as permutation equivariance. In this work, we consider auction design problems that have permutation-equivariant symmetry and construct a neural architecture that is capable of perfectly recovering the permutation- equivariant optimal mechanism, which we show is not possible with the previous architecture. We demonstrate that permutation-equivariant architectures are not only capable of recovering previous results, they also have better generalization properties. 
    more » « less
  3. Incorporating group symmetry directly into the learning process has proved to be an effective guideline for model design. By producing features that are guaranteed to transform covariantly to the group actions on the inputs, group-equivariant convolutional neural networks (G-CNNs) achieve significantly improved generalization performance in learning tasks with intrinsic symmetry. General theory and practical implementation of G-CNNs have been studied for planar images under either rotation or scaling transformation, but only individually. We present, in this paper, a roto-scale-translation equivariant CNN (RST-CNN), that is guaranteed to achieve equivariance jointly over these three groups via coupled group convolutions. Moreover, as symmetry transformations in reality are rarely perfect and typically subject to input deformation, we provide a stability analysis of the equivariance of representation to input distortion, which motivates the truncated expansion of the convolutional filters under (pre-fixed) low-frequency spatial modes. The resulting model provably achieves deformation-robust RST-equivariance, i.e., the RST-symmetry is still "approximately” preserved when the transformation is "contaminated” by a nuisance data deformation, a property that is especially important for out-of-distribution generalization. Numerical experiments on MNIST, Fashion-MNIST, and STL-10 demonstrate that the proposed model yields remarkable gains over prior arts, especially in the small data regime where both rotation and scaling variations are present within the data. 
    more » « less
  4. Incorporating group symmetry directly into the learning process has proved to be an effective guideline for model design. By producing features that are guaranteed to transform covariantly to the group actions on the inputs, group-equivariant convolutional neural networks (G-CNNs) achieve significantly improved generalization performance in learning tasks with intrinsic symmetry. General theory and practical implementation of G-CNNs have been studied for planar images under either rotation or scaling transformation, but only individually. We present, in this paper, a roto-scale-translation equivariant CNN (RST -CNN), that is guaranteed to achieve equivariance jointly over these three groups via coupled group convolutions. Moreover, as symmetry transformations in reality are rarely perfect and typically subject to input deformation, we provide a stability analysis of the equivariance of representation to input distortion, which motivates the truncated expansion of the convolutional filters under (pre-fixed) low-frequency spatial modes. The resulting model provably achieves deformation-robust RST equivariance, i.e., the RST symmetry is still “approximately” preserved when the transformation is “contaminated” by a nuisance data deformation, a property that is especially important for out-of-distribution generalization. Numerical experiments on MNIST, Fashion-MNIST, and STL-10 demonstrate that the proposed model yields remarkable gains over prior arts, especially in the small data regime where both rotation and scaling variations are present within the data. 
    more » « less
  5. Abstract Motivation

    The field of geometric deep learning has recently had a profound impact on several scientific domains such as protein structure prediction and design, leading to methodological advancements within and outside of the realm of traditional machine learning. Within this spirit, in this work, we introduce GCPNet, a new chirality-aware SE(3)-equivariant graph neural network designed for representation learning of 3D biomolecular graphs. We show that GCPNet, unlike previous representation learning methods for 3D biomolecules, is widely applicable to a variety of invariant or equivariant node-level, edge-level, and graph-level tasks on biomolecular structures while being able to (1) learn important chiral properties of 3D molecules and (2) detect external force fields.

    Results

    Across four distinct molecular-geometric tasks, we demonstrate that GCPNet’s predictions (1) for protein–ligand binding affinity achieve a statistically significant correlation of 0.608, more than 5%, greater than current state-of-the-art methods; (2) for protein structure ranking achieve statistically significant target-local and dataset-global correlations of 0.616 and 0.871, respectively; (3) for Newtownian many-body systems modeling achieve a task-averaged mean squared error less than 0.01, more than 15% better than current methods; and (4) for molecular chirality recognition achieve a state-of-the-art prediction accuracy of 98.7%, better than any other machine learning method to date.

    Availability and implementation

    The source code, data, and instructions to train new models or reproduce our results are freely available at https://github.com/BioinfoMachineLearning/GCPNet.

     
    more » « less