skip to main content

Search for: All records

Award ID contains: 1763268

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Perceiving and interacting with 3D articulated objects, such as cabinets, doors, and faucets, pose particular challenges for future home-assistant robots performing daily tasks in human environments. Besides parsing the articulated parts and joint parameters, researchers recently advocate learning manipulation affordance over the input shape geometry which is more task-aware and geometrically fine-grained. However, taking only passive observations as inputs, these methods ignore many hidden but important kinematic constraints (e.g., joint location and limits) and dynamic factors (e.g., joint friction and restitution), therefore losing significant accuracy for test cases with such uncertainties. In this paper, we propose a novel framework, named AdaAfford, that learns to perform very few test-time interactions for quickly adapting the affordance priors to more accurate instance-specific posteriors. We conduct large-scale experiments using the PartNet-Mobility dataset and prove that our system performs better than baselines.
    Free, publicly-accessible full text available October 24, 2023
  2. In this work, we tackle the problem of active camera localization, which controls the camera movements actively to achieve an accurate camera pose. The past solutions are mostly based on Markov Localization, which reduces the position-wise camera uncertainty for localization. These approaches localize the camera in the discrete pose space and are agnostic to the localization-driven scene property, which restricts the camera pose accuracy in the coarse scale. We propose to overcome these limitations via a novel active camera localization algorithm, composed of a passive and an active localization module. The former optimizes the camera pose in the continuous pose space by establishing point-wise camera-world correspondences. The latter explicitly models the scene and camera uncertainty components to plan the right path for accurate camera pose estimation. We validate our algorithm on the challenging localization scenarios from both synthetic and scanned real-world indoor scenes. Experimental results demonstrate that our algorithm outperforms both the state-of-the-art Markov Localization based approach and other compared approaches on the fine-scale camera pose accuracy
    Free, publicly-accessible full text available October 24, 2023
  3. Perceiving and manipulating 3D articulated objects (e.g., cabinets, doors) in human environments is an important yet challenging task for future home-assistant robots. The space of 3D articulated objects is exceptionally rich in their myriad semantic categories, diverse shape geometry, and complicated part functionality. Previous works mostly abstract kinematic structure with estimated joint parameters and part poses as the visual representations for manipulating 3D articulated objects. In this paper, we propose object-centric actionable visual priors as a novel perception-interaction handshaking point that the perception system outputs more actionable guidance than kinematic structure estimation, by predicting dense geometry-aware, interaction-aware, and task-aware visual action affordance and trajectory proposals. We design an interaction-for-perception framework VAT-Mart to learn such actionable visual representations by simultaneously training a curiosity-driven reinforcement learning policy exploring diverse interaction trajectories and a perception module summarizing and generalizing the explored knowledge for pointwise predictions among diverse shapes. Experiments prove the effectiveness of the proposed approach using the large-scale PartNet-Mobility dataset in SAPIEN environment and show promising generalization capabilities to novel test shapes, unseen object categories, and real-world data.
    Free, publicly-accessible full text available April 25, 2023
  4. Building embodied intelligent agents that can interact with 3D indoor environments has received increasing research attention in recent years. While most works focus on single-object or agent-object visual functionality and affordances, our work proposes to study a new kind of visual relationship that is also important to perceive and model -- inter-object functional relationships (e.g., a switch on the wall turns on or off the light, a remote control operates the TV). Humans often spend little or no effort to infer these relationships, even when entering a new room, by using our strong prior knowledge (e.g., we know that buttons control electrical devices) or using only a few exploratory interactions in cases of uncertainty (e.g., multiple switches and lights in the same room). In this paper, we take the first step in building AI system learning inter-object functional relationships in 3D indoor environments with key technical contributions of modeling prior knowledge by training over large-scale scenes and designing interactive policies for effectively exploring the training scenes and quickly adapting to novel test scenes. We create a new benchmark based on the AI2Thor and PartNet datasets and perform extensive experiments that prove the effectiveness of our proposed method. Results show thatmore »our model successfully learns priors and fast-interactive-adaptation strategies for exploring inter-object functional relationships in complex 3D scenes. Several ablation studies further validate the usefulness of each proposed module.« less
    Free, publicly-accessible full text available April 25, 2023
  5. Contrary to the vast literature in modeling, perceiving, and understanding agent-object (e.g., human-object, hand-object, robot-object) interaction in computer vision and robotics, very few past works have studied the task of object-object interaction, which also plays an important role in robotic manipulation and planning tasks. There is a rich space of object-object interaction scenarios in our daily life, such as placing an object on a messy tabletop, fitting an object inside a drawer, pushing an object using a tool, etc. In this paper, we propose a unified affordance learning framework to learn object-object interaction for various tasks. By constructing four object-object interaction task environments using physical simulation (SAPIEN) and thousands of ShapeNet models with rich geometric diversity, we are able to conduct large-scale object-object affordance learning without the need for human annotations or demonstrations. At the core of technical contribution, we propose an object-kernel point convolution network to reason about detailed interaction between two objects. Experiments on large-scale synthetic data and real-world data prove the effectiveness of the proposed approach.
  6. One of the fundamental goals of visual perception is to allow agents to meaningfully interact with their environment. In this paper, we take a step towards that long-term goal – we extract highly localized actionable information related to elementary actions such as pushing or pulling for articulated objects with movable parts. For example, given a drawer, our network predicts that applying a pulling force on the handle opens the drawer. We propose, discuss, and evaluate novel network architectures that given image and depth data, predict the set of actions possible at each pixel, and the regions over articulated parts that are likely to move under the force. We propose a learning-from-interaction framework with an online data sampling strategy that allows us to train the network in simulation (SAPIEN) and generalizes across categories. Check the website for code and data release.
  7. In this work, we tackle the problem of category-level online pose tracking of objects from point cloud sequences. For the first time, we propose a unified framework that can handle 9DoF pose tracking for novel rigid object instances as well as per-part pose tracking for articulated objects from known categories. Here the 9DoF pose, comprising 6D pose and 3D size, is equivalent to a 3D amodal bounding box representation with free 6D pose. Given the depth point cloud at the current frame and the estimated pose from the last frame, our novel end-to-end pipeline learns to accurately update the pose. Our pipeline is composed of three modules: 1) a pose canonicalization module that normalizes the pose of the input depth point cloud; 2) RotationNet, a module that directly regresses small interframe delta rotations; and 3) CoordinateNet, a module that predicts the normalized coordinates and segmentation, enabling analytical computation of the 3D size and translation. Leveraging the small pose regime in the pose-canonicalized point clouds, our method integrates the best of both worlds by combining dense coordinate prediction and direct rotation regression, thus yielding an end-to-end differentiable pipeline optimized for 9DoF pose accuracy (without using non-differentiable RANSAC). Our extensive experiments demonstratemore »that our method achieves new state-of-the-art performance on category-level rigid object pose (NOCSREAL275 [29]) and articulated object pose benchmarks (SAPIEN [34], BMVC [18]) at the fastest FPS ∼ 12.« less
  8. We introduce HuMoR: a 3D Human Motion Model for Robust Estimation of temporal pose and shape. Though substantial progress has been made in estimating 3D human motion and shape from dynamic observations, recovering plausible pose sequences in the presence of noise and occlusions remains a challenge. For this purpose, we propose an expressive generative model in the form of a conditional variational autoencoder, which learns a distribution of the change in pose at each step of a motion sequence. Furthermore, we introduce a flexible optimization-based approach that leverages HuMoR as a motion prior to robustly estimate plausible pose and shape from ambiguous observations. Through extensive evaluations, we demonstrate that our model generalizes to diverse motions and body shapes after training on a large motion capture dataset, and enables motion reconstruction from multiple input modalities including 3D keypoints and RGB(-D) videos. See the project page at geometry.stanford.edu/projects/humor.
  9. We present MultiBodySync, a novel, end-to-end trainable multi-body motion segmentation and rigid registration framework for multiple input 3D point clouds. The two non-trivial challenges posed by this multi-scan multibody setting that we investigate are: (i) guaranteeing correspondence and segmentation consistency across multiple input point clouds capturing different spatial arrangements of bodies or body parts; and (ii) obtaining robust motion-based rigid body segmentation applicable to novel object categories. We propose an approach to address these issues that incorporates spectral synchronization into an iterative deep declarative network, so as to simultaneously recover consistent correspondences as well as motion segmentation. At the same time, by explicitly disentangling the correspondence and motion segmentation estimation modules, we achieve strong generalizability across different object categories. Our extensive evaluations demonstrate that our method is effective on various datasets ranging from rigid parts in articulated objects to individually moving objects in a 3D scene, be it single-view or full point clouds.
  10. 3D object detection is an important yet demanding task that heavily relies on difficult to obtain 3D annotations. To reduce the required amount of supervision, we propose 3DIoUMatch, a novel semi-supervised method for 3D object detection applicable to both indoor and outdoor scenes. We leverage a teacher-student mutual learning framework to propagate information from the labeled to the unlabeled train set in the form of pseudo-labels. However, due to the high task complexity, we observe that the pseudo-labels suffer from significant noise and are thus not directly usable. To that end, we introduce a confidence-based filtering mechanism, inspired by FixMatch. We set confidence thresholds based upon the predicted objectness and class probability to filter low-quality pseudo-labels. While effective, we observe that these two measures do not sufficiently capture localization quality. We therefore propose to use the estimated 3D IoU as a localization metric and set category-aware self-adjusted thresholds to filter poorly localized proposals. We adopt VoteNet as our backbone detector on indoor datasets while we use PV-RCNN on the autonomous driving dataset, KITTI. Our method consistently improves state-of-the-art methods on both ScanNet and SUN-RGBD benchmarks by significant margins under all label ratios (including fully labeled setting). For example, when trainingmore »using only 10% labeled data on ScanNet, 3DIoUMatch achieves 7.7 absolute improvement on mAP@0.25 and 8.5 absolute improvement on mAP@0.5 upon the prior art. On KITTI, we are the first to demonstrate semi-supervised 3D object detection and our method surpasses a fully supervised baseline from 1.8% to 7.6% under different label ratio and categories.« less