skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Rethinking Sampling in 3D Point Cloud Generative Adversarial Networks
In this paper, we examine the long-neglected yet important effects of point sampling patterns in point cloud GANs. Through extensive experiments, we show that sampling-insensitive discriminators (e.g.PointNet-Max) produce shape point clouds with point clustering artifacts while sampling-oversensitive discriminators (e.g. PointNet++, DGCNN) fail to guide valid shape generation. We propose the concept of sampling spectrum to depict the different sampling sensitivities of discriminators. We further study how different evaluation metrics weigh the sampling pattern against the geometry and propose several perceptual metrics forming a sampling spectrum of metrics. Guided by the proposed sampling spectrum, we discover a middle-point sampling-aware baseline discriminator, PointNet-Mix, which improves all existing point cloud generators by a large margin on sampling-related metrics. We point out that, though recent research has been focused on the generator design, the main bottleneck of point cloud GAN actually lies in the discriminator design. Our work provides both suggestions and tools for building future discriminators. We will release the code to facilitate future research.  more » « less
Award ID(s):
1763268
PAR ID:
10285245
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshop
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Salakhutdinov, Ruslan; Kolter, Zico; Heller, Katherine; Weller, Adrian; Nuria, Jonathan; Scarlett, Oliver; Berkenkamp, Felix (Ed.)
    We propose VecKM, a local point cloud geometry encoder that is descriptive and efficient to compute. VecKM leverages a unique approach by vectorizing a kernel mixture to represent the local point cloud. Such representation's descriptiveness is supported by two theorems that validate its ability to reconstruct and preserve the similarity of the local shape. Unlike existing encoders down-sampling the local point cloud, VecKM constructs the local geometry encoding using all neighboring points, producing a more descriptive encoding. Moreover, VecKM is efficient to compute and scalable to large point cloud inputs: VecKM reduces the memory cost from (n2 + nKd) to (nd + np); and reduces the major runtime cost from computing nK MLPs to n MLPs, where n is the size of the point cloud, K is the neighborhood size, d is the encoding dimension, and p is a marginal factor. The efficiency is due to VecKM's unique factorizable property that eliminates the need of explicitly grouping points into neighbors. In the normal estimation task, VecKM demonstrates not only 100× faster inference speed but also highest accuracy and strongest robustness. In classification and segmentation tasks, integrating VecKM as a preprocessing module achieves consistently better performance than the PointNet, PointNet++, and point transformer baselines, and runs consistently faster by up to 10 times. 
    more » « less
  2. We propose a generative model of unordered point sets, such as point clouds, in the form of an energy-based model, where the energy function is parameterized by an input permutation- invariant bottom-up neural network. The energy function learns a coordinate encoding of each point and then aggregates all individual point features into an energy for the whole point cloud. We call our model the Generative PointNet because it can be derived from the discriminative PointNet. Our model can be trained by MCMC based maximum likelihood learning (as well as its variants), without the help of any assisting networks like those in GANs and VAEs. Unlike most point cloud generators that rely on hand-crafted distance metrics, our model does not require any hand-crafted distance metric for the point cloud generation, because it synthesizes point clouds by matching observed examples in terms of statistical properties defined by the energy function. Furthermore, we can learn a short run MCMC toward the energy-based model as a flow-like generator for point cloud reconstruction and interpolation. The learned point cloud representation can be useful for point cloud classification. Experiments demonstrate the advantages of the proposed generative model of point clouds. 
    more » « less
  3. Abstract. Most deep learning (DL) methods that are not end-to-end use several multi-scale and multi-type hand-crafted features that make the network challenging, more computationally intensive and vulnerable to overfitting. Furthermore, reliance on empirically-based feature dimensionality reduction may lead to misclassification. In contrast, efficient feature management can reduce storage and computational complexities, builds better classifiers, and improves overall performance. Principal Component Analysis (PCA) is a well-known dimension reduction technique that has been used for feature extraction. This paper presents a two-step PCA based feature extraction algorithm that employs a variant of feature-based PointNet (Qi et al., 2017a) for point cloud classification. This paper extends the PointNet framework for use on large-scale aerial LiDAR data, and contributes by (i) developing a new feature extraction algorithm, (ii) exploring the impact of dimensionality reduction in feature extraction, and (iii) introducing a non-end-to-end PointNet variant for per point classification in point clouds. This is demonstrated on aerial laser scanning (ALS) point clouds. The algorithm successfully reduces the dimension of the feature space without sacrificing performance, as benchmarked against the original PointNet algorithm. When tested on the well-known Vaihingen data set, the proposed algorithm achieves an Overall Accuracy (OA) of 74.64% by using 9 input vectors and 14 shape features, whereas with the same 9 input vectors and only 5PCs (principal components built by the 14 shape features) it actually achieves a higher OA of 75.36% which demonstrates the effect of efficient dimensionality reduction. 
    more » « less
  4. Deep generative models of 3D shapes have received a great deal of research interest. Yet, almost all of them generate discrete shape representations, such as voxels, point clouds, and polygon meshes. We present the first 3D generative model for a drastically different shape representation—describing a shape as a sequence of computer-aided design (CAD) operations. Unlike meshes and point clouds, CAD models encode the user creation process of 3D shapes, widely used in numerous industrial and engineering design tasks. However, the sequential and irregular structure of CAD operations poses significant challenges for existing 3D generative models. Drawing an analogy between CAD operations and natural language, we propose a CAD generative network based on the Transformer. We demonstrate the performance of our model for both shape autoencoding and random shape generation. To train our network, we create a new CAD dataset consisting of 178,238 models and their CAD construction sequences. We have made this dataset publicly available to promote future research on this topic. 
    more » « less
  5. In this paper, we introduce DuelGAN, a generative adversarial network (GAN) solution to improve the stability of the generated samples and to mitigate mode collapse. Built upon the Vanilla GAN’s two-player game between the discriminator D1 and the generator G, we introduce a peer discriminator D2 to the min-max game. Similar to previous work using two discriminators, the first role of both D1, D2 is to distinguish between generated samples and real ones, while the generator tries to generate high-quality samples which are able to fool both discriminators. Different from existing methods, we introduce a duel between D1 and D2 to discourage their agreement and therefore increase the level of diversity of the generated samples. This property alleviates the issue of early mode collapse by preventing D1 and D2 from converging too fast. We provide theoretical analysis for the equilibrium of the min-max game formed among G,D1,D2. We offer convergence behavior of DuelGAN as well as stability of the min-max game. It’s worth mentioning that DuelGAN operates in the unsupervised setting, and the duel between D1 and D2 does not need any label supervision. Experiments results on a synthetic dataset and on real-world image datasets (MNIST, Fashion MNIST, CIFAR-10, STL-10, CelebA, VGG) demonstrate that DuelGAN outperforms competitive baseline work in generating diverse and high-quality samples, while only introduces negligible computation cost. Our code is publicly available at https://github.com/UCSC-REAL/DuelGAN. 
    more » « less