skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Adaptive RF Fingerprint Decomposition in Micro UAV Detection based on Machine Learning
Radio frequency (RF) signal classification has significantly been used for detecting and identifying the features of unknown unmanned aerial vehicles (UAVs). This paper proposes a method using empirical mode decomposition (EMD) and ensemble empirical mode decomposition (EEMD) on extracting the communication channel characteristics of intruding UAVs. The decomposed intrinsic mode functions (IMFs) except noise components are selected for RF signal pattern recognition based on machine learning (ML). The classification results show that the denoising effects introduced by EMD and EEMD could both fit in improving the detection accuracy with different features of RF communication channel, especially on identifying time-varying RF signal sources.  more » « less
Award ID(s):
1956193
PAR ID:
10285311
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
Page Range / eLocation ID:
7968 to 7972
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. One of the most basic pieces of information gained from dynamic electromyography is accurately defining muscle action and phase timing within the gait cycle. The human gait relies on selective timing and the intensity of appropriate muscle activations for stability, loading, and progression over the supporting foot during stance, and further to advance the limb in the swing phase. A common clinical practice is utilizing a low-pass filter to denoise integrated electromyogram (EMG) signals and to determine onset and cessation events using a predefined threshold. However, the accuracy of the defining period of significant muscle activations via EMG varies with the temporal shift involved in filtering the signals; thus, the low-pass filtering method with a fixed order and cut-off frequency will introduce a time delay depending on the frequency of the signal. In order to precisely identify muscle activation and to determine the onset and cessation times of the muscles, we have explored here onset and cessation epochs with denoised EMG signals using different filter banks: the wavelet method, empirical mode decomposition (EMD) method, and ensemble empirical mode decomposition (EEMD) method. In this study, gastrocnemius muscle onset and cessation were determined in sixteen participants within two different age groups and under two different walking conditions. Low-pass filtering of integrated EMG (iEMG) signals resulted in premature onset (28% stance duration) in younger and delayed onset (38% stance duration) in older participants, showing the time-delay problem involved in this filtering method. Comparatively, the wavelet denoising approach detected onset for normal walking events most precisely, whereas the EEMD method showed the smallest onset deviation. In addition, EEMD denoised signals could further detect pre-activation onsets during a fast walking condition. A comprehensive comparison is discussed on denoising EMG signals using EMD, EEMD, and wavelet denoising in order to accurately define an onset of muscle under different walking conditions. 
    more » « less
  2. The application of empirical mode decomposition (EMD) in the analysis and processing of lightning electric field waveforms acquired by the low-frequency e-field detection array (LFEDA) in China has significantly improved the capabilities of the low-frequency/very-low-frequency (LF/VLF) time-of-arrival technique for studying the lightning discharge processes. However, the inherent mode mixing and the endpoint effect of EMD lead to certain problems, such as an inadequate noise reduction capability, the incorrect matching of multistation waveforms, and the inaccurate extraction of pulse information, which limit the further development of the LFEDA's positioning ability. To solve these problems, the advanced ensemble EMD (EEMD) technique is introduced into the analysis of LF/VLF lightning measurements, and a double-sided bidirectional mirror (DBM) extension method is proposed to overcome the endpoint effect of EMD. EEMD can effectively suppress mode mixing, and the DBM extension method proposed in this article can effectively suppress the endpoint effect, thus greatly improving the accuracy of a simulated signal after a 25-500-kHz bandpass filter. The resulting DBM_EEMD algorithm can be used in the LFEDA system to process and analyze the detected electric field signals to improve the system's lightning location capabilities, especially in terms of accurate extraction and location of weak signals from lightning discharges. In this article, a 3-D image of artificially triggered lightning obtained from an LF/VLF location system is reported for the first time, and methods for further improving the location capabilities of the LF/VLF lightning detection systems are discussed. 
    more » « less
  3. Radar sensing of respiratory motion from unmanned aerial vehicles (UAVs) offers great promise for remote life sensing especially in post-disaster search and rescue applications. One major challenge for this technology is the management of motion artifacts from the moving UAV platform. Prior research has focused on using an adaptive filtering approach which requires installing a secondary radar module for capturing platform motion as a noise reference. This paper investigates the potential of the empirical mode decomposition (EMD) technique for the compensation of platform motion artifacts using only primary radar measurements. Experimental results demonstrated that the proposed EMD approach can extract the fundamental frequency of the breathing motion from the combined breathing and platform motion using only one radar, with an accuracy above 87%. 
    more » « less
  4. We propose a framework called AirID that identifies friendly/authorized UAVs using RF signals emitted by radios mounted on them through a technique called as RF finger- printing. Our main contribution is a method of intentionally inserting ‘signatures’ in the transmitted I/Q samples from each UAV, which are detected through a deep convolutional neural network (CNN) at the physical layer, without affecting the ongoing UAV data communication process. Specifically, AirID addresses the challenge of how to overcome the channel-induced perturbations in the transmitted signal that lowers identification accuracy. AirID is implemented using Ettus B200mini Software Defined Radios (SDRs) that serve as both static ground UAV identifiers, as well as mounted on DJI Matrice M100 UAVs to perform the identification collaboratively as an aerial swarm. AirID tackles the well-known problem of low RF fingerprinting accuracy in ‘train on one day test on another day’ conditions as the aerial environment is constantly changing. Results reveal 98% identification accuracy for authorized UAVs, while maintaining a stable communication BER of 10^−4 for the evaluated cases. 
    more » « less
  5. With the development and wide deployment of measurement equipment, data can be automatically measured and visualized for situation awareness in power systems. However, the cyber security of power systems is also threatened by data spoofing attacks. This letter proposed a measurement data source authentication (MDSA) algorithm based on feature extraction techniques including ensemble empirical mode decomposition (EEMD) and fast Fourier transform (FFT), and machine learning for real-time measurement data classification. Compared with previous work, the proposed algorithm can achieve higher accuracy of MDSA using a shorter window of data from closely located synchrophasor measurement sensors. 
    more » « less