skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Cognitive modeling for computational epidemiology
Strategic response options to the COVID-19 pandemic have been greatly influenced by predictive epidemiological models. Effects of non-pharmaceutical interventions (NPIs; such as mask wearing) unfortunately are based on an abundance of very large uncertainties around the extent to which the population adopts risk reducing behaviors. The effects of NPIs appear to have large heterogeneity across regions, subgroups, and individual mindsets and capabilities. We hypothesize that these uncertainties can be improved with higher-fidelity computational modeling of the social-psychological reactions of individuals, groups, and populations. We build up the ACT-R theory and Instance-Based Learning Theory to formulate psychologically valid agents and develop a framework that integrates multi-level cognitive and social simulation with information networks analysis, and epidemiological predictions. We present initial results from analyses of beliefs and sentiments about COVID-19 NPIs induced from online social media that can provide inputs to seed and validate cognitive agents. We present illustrations of cognitive model hypotheses about the dynamics of behavior change in response to intentions, attitudes, messaging, and source credibility. We present an example of social networks propagating attitude change in response to NPIs.  more » « less
Award ID(s):
2033390
PAR ID:
10285323
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
2020 International Conference on Social Computing, Behavioral-Cultural Modeling & Prediction and Behavior Representation in Modeling and Simulation (SPB-BRIMS 2020)
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    To date, the only effective means to respond to the spreading of the COVID-19 pandemic are non-pharmaceutical interventions (NPIs), which entail policies to reduce social activity and mobility restrictions. Quantifying their effect is difficult, but it is key to reducing their social and economic consequences. Here, we introduce a meta-population model based on temporal networks, calibrated on the COVID-19 outbreak data in Italy and applied to evaluate the outcomes of these two types of NPIs. Our approach combines the advantages of granular spatial modelling of meta-population models with the ability to realistically describe social contacts via activity-driven networks. We focus on disentangling the impact of these two different types of NPIs: those aiming at reducing individuals’ social activity, for instance through lockdowns, and those that enforce mobility restrictions. We provide a valuable framework to assess the effectiveness of different NPIs, varying with respect to their timing and severity. Results suggest that the effects of mobility restrictions largely depend on the possibility of implementing timely NPIs in the early phases of the outbreak, whereas activity reduction policies should be prioritized afterwards. 
    more » « less
  2. As the novel coronavirus (COVID-19) pandemic continues to expand, policymakers are striving to balance the combinations of nonpharmaceutical interventions (NPIs) to keep people safe and minimize social disruptions. We developed and calibrated an agent-based simulation to model COVID-19 outbreaks in the greater Seattle area. The model simulated NPIs, including social distancing, face mask use, school closure, testing, and contact tracing with variable compliance and effectiveness to identify optimal NPI combinations that can control the spread of the virus in a large urban area. Results highlight the importance of at least 75% face mask use to relax social distancing and school closure measures while keeping infections low. It is important to relax NPIs cautiously during vaccine rollout in 2021. 
    more » « less
  3. Abstract The rapid rollout of the COVID-19 vaccine raises the question of whether and when the ongoing pandemic could be eliminated with vaccination and non-pharmaceutical interventions (NPIs). Despite advances in the impact of NPIs and the conceptual belief that NPIs and vaccination control COVID-19 infections, we lack evidence to employ control theory in real-world social human dynamics in the context of disease spreading. We bridge the gap by developing a new analytical framework that treats COVID-19 as a feedback control system with the NPIs and vaccination as the controllers and a computational model that maps human social behaviors into input signals. This approach enables us to effectively predict the epidemic spreading in 381 Metropolitan statistical areas (MSAs) in the US by learning our model parameters utilizing the time series NPIs (i.e., the stay-at-home order, face-mask wearing, and testing) data. This model allows us to optimally identify three NPIs to predict infections accurately in 381 MSAs and avoid over-fitting. Our numerical results demonstrate our approach’s excellent predictive power with R 2  > 0.9 for all the MSAs regardless of their sizes, locations, and demographic status. Our methodology allows us to estimate the needed vaccine coverage and NPIs for achieving R e to a manageable level and how the variants of concern diminish the likelihood for disease elimination at each location. Our analytical results provide insights into the debates surrounding the elimination of COVID-19. NPIs, if tailored to the MSAs, can drive the pandemic to an easily containable level and suppress future recurrences of epidemic cycles. 
    more » « less
  4. Abstract During outbreaks of emerging infectious diseases, internationally connected cities often experience large and early outbreaks, while rural regions follow after some delay. This hierarchical structure of disease spread is influenced primarily by the multiscale structure of human mobility. However, during the COVID-19 epidemic, public health responses typically did not take into consideration the explicit spatial structure of human mobility when designing nonpharmaceutical interventions (NPIs). NPIs were applied primarily at national or regional scales. Here, we use weekly anonymized and aggregated human mobility data and spatially highly resolved data on COVID-19 cases at the municipality level in Mexico to investigate how behavioral changes in response to the pandemic have altered the spatial scales of transmission and interventions during its first wave (March–June 2020). We find that the epidemic dynamics in Mexico were initially driven by exports of COVID-19 cases from Mexico State and Mexico City, where early outbreaks occurred. The mobility network shifted after the implementation of interventions in late March 2020, and the mobility network communities became more disjointed while epidemics in these communities became increasingly synchronized. Our results provide dynamic insights into how to use network science and epidemiological modeling to inform the spatial scale at which interventions are most impactful in mitigating the spread of COVID-19 and infectious diseases in general. 
    more » « less
  5. Eksin, Ceyhun (Ed.)
    The global pandemic of COVID-19 revealed the dynamic heterogeneity in how individuals respond to infection risks, government orders, and community-specific social norms. Here we demonstrate how both individual observation and social learning are likely to shape behavioral, and therefore epidemiological, dynamics over time. Efforts to delay and reduce infections can compromise their own success, especially when disease risk and social learning interact within sub-populations, as when people observe others who are (a) infected and/or (b) socially distancing to protect themselves from infection. Simulating socially-learning agents who observe effects of a contagious virus, our modelling results are consistent with with 2020 data on mask-wearing in the U.S. and also concur with general observations of cohort induced differences in reactions to public health recommendations. We show how shifting reliance on types of learning affect the course of an outbreak, and could therefore factor into policy-based interventions incorporating age-based cohort differences in response behavior. 
    more » « less