Abstract Travel patterns and mobility affect the spread of infectious diseases like COVID-19. However, we do not know to what extent local vs. visitor mobility affects the growth in the number of cases. This study evaluates the impact of state-level local vs. visitor mobility in understanding the growth with respect to the number of cases for COVID spread in the United States between March 1, 2020, and December 31, 2020. Two metrics, namely local and visitor transmission risk, were extracted from mobility data to capture the transmission potential of COVID-19 through mobility. A combination of the three factors: the current number of cases, local transmission risk, and the visitor transmission risk, are used to model the future number of cases using various machine learning models. The factors that contribute to better forecast performance are the ones that impact the number of cases. The statistical significance of the forecasts is also evaluated using the Diebold–Mariano test. Finally, the performance of models is compared for three waves across all 50 states. The results show that visitor mobility significantly impacts the case growth by improving the prediction accuracy by 33.78%. We also observe that the impact of visitor mobility is more pronounced during the first peak, i.e., March–June 2020.
more »
« less
Spatial scales of COVID-19 transmission in Mexico
Abstract During outbreaks of emerging infectious diseases, internationally connected cities often experience large and early outbreaks, while rural regions follow after some delay. This hierarchical structure of disease spread is influenced primarily by the multiscale structure of human mobility. However, during the COVID-19 epidemic, public health responses typically did not take into consideration the explicit spatial structure of human mobility when designing nonpharmaceutical interventions (NPIs). NPIs were applied primarily at national or regional scales. Here, we use weekly anonymized and aggregated human mobility data and spatially highly resolved data on COVID-19 cases at the municipality level in Mexico to investigate how behavioral changes in response to the pandemic have altered the spatial scales of transmission and interventions during its first wave (March–June 2020). We find that the epidemic dynamics in Mexico were initially driven by exports of COVID-19 cases from Mexico State and Mexico City, where early outbreaks occurred. The mobility network shifted after the implementation of interventions in late March 2020, and the mobility network communities became more disjointed while epidemics in these communities became increasingly synchronized. Our results provide dynamic insights into how to use network science and epidemiological modeling to inform the spatial scale at which interventions are most impactful in mitigating the spread of COVID-19 and infectious diseases in general.
more »
« less
- Award ID(s):
- 1927425
- PAR ID:
- 10545476
- Publisher / Repository:
- Oxford University Press
- Date Published:
- Journal Name:
- PNAS Nexus
- Volume:
- 3
- Issue:
- 9
- ISSN:
- 2752-6542
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Policymakers everywhere are working to determine the set of restrictions that will effectively contain the spread of COVID-19 without excessively stifling economic activity. We show that publicly available data on human mobility—collected by Google, Facebook, and other providers—can be used to evaluate the effectiveness of non-pharmaceutical interventions (NPIs) and forecast the spread of COVID-19. This approach uses simple and transparent statistical models to estimate the effect of NPIs on mobility, and basic machine learning methods to generate 10-day forecasts of COVID-19 cases. An advantage of the approach is that it involves minimal assumptions about disease dynamics, and requires only publicly-available data. We evaluate this approach using local and regional data from China, France, Italy, South Korea, and the United States, as well as national data from 80 countries around the world. We find that NPIs are associated with significant reductions in human mobility, and that changes in mobility can be used to forecast COVID-19 infections.more » « less
-
Abstract Human mobility is fundamental to a range of applications including epidemic control, urban planning, and traffic engineering. While laws governing individual movement trajectories and population flows across locations have been extensively studied, the predictability of population-level mobility during the COVID-19 pandemic driven by specific activities such as work, shopping, and recreation remains elusive. Here we analyze mobility data for six place categories at the US county level from 2020 February 15 to 2021 November 23 and measure how the predictability of these mobility metrics changed during the COVID-19 pandemic. We quantify the time-varying predictability in each place category using an information-theoretic metric, permutation entropy. We find disparate predictability patterns across place categories over the course of the pandemic, suggesting differential behavioral changes in human activities perturbed by disease outbreaks. Notably, predictability change in foot traffic to residential locations is mostly in the opposite direction to other mobility categories. Specifically, visits to residences had the highest predictability during stay-at-home orders in March 2020, while visits to other location types had low predictability during this period. This pattern flipped after the lifting of restrictions during summer 2020. We identify four key factors, including weather conditions, population size, COVID-19 case growth, and government policies, and estimate their nonlinear effects on mobility predictability. Our findings provide insights on how people change their behaviors during public health emergencies and may inform improved interventions in future epidemics.more » « less
-
The estimates of contiguousness parameters of an epidemic have been used for health-related policy and control measures such as non-pharmaceutical control interventions (NPIs). The estimates have varied by demographics, epidemic phase, and geographical region. Our aim was to estimate four contagiousness parameters: basic reproduction number ( R 0 ), contact rate, removal rate, and infectious period of coronavirus disease 2019 (COVID-19) among eight African countries, namely Angola, Botswana, Egypt, Ethiopia, Malawi, Nigeria, South Africa, and Tunisia using Susceptible, Infectious, or Recovered (SIR) epidemic models for the period 1 January 2020 to 31 December 2021. For reference, we also estimated these parameters for three of COVID-19's most severely affected countries: Brazil, India, and the USA. The basic reproduction number, contact and remove rates, and infectious period ranged from 1.11 to 1.59, 0.53 to 1.0, 0.39 to 0.81; and 1.23 to 2.59 for the eight African countries. For the USA, Brazil, and India these were 1.94, 0.66, 0.34, and 2.94; 1.62, 0.62, 0.38, and 2.62, and 1.55, 0.61, 0.39, and 2.55, respectively. The average COVID-19 related case fatality rate for 8 African countries in this study was estimated to be 2.86%. Contact and removal rates among an affected African population were positively and significantly associated with COVID-19 related deaths ( p -value < 0.003). The larger than one estimates of the basic reproductive number in the studies of African countries indicate that COVID-19 was still being transmitted exponentially by the 31 December 2021, though at different rates. The spread was even higher for the three countries with substantial COVID-19 outbreaks. The lower removal rates in the USA, Brazil, and India could be indicative of lower death rates (a proxy for good health systems). Our findings of variation in the estimate of COVID-19 contagiousness parameters imply that countries in the region may implement differential COVID-19 containment measures.more » « less
-
The COVID-19 pandemic is a global threat presenting health, economic, and social challenges that continue to escalate. Metapopulation epidemic modeling studies in the susceptible–exposed–infectious–removed (SEIR) style have played important roles in informing public health policy making to mitigate the spread of COVID-19. These models typically rely on a key assumption on the homogeneity of the population. This assumption certainly cannot be expected to hold true in real situations; various geographic, socioeconomic, and cultural environments affect the behaviors that drive the spread of COVID-19 in different communities. What’s more, variation of intracounty environments creates spatial heterogeneity of transmission in different regions. To address this issue, we develop a human mobility flow-augmented stochastic SEIR-style epidemic modeling framework with the ability to distinguish different regions and their corresponding behaviors. This modeling framework is then combined with data assimilation and machine learning techniques to reconstruct the historical growth trajectories of COVID-19 confirmed cases in two counties in Wisconsin. The associations between the spread of COVID-19 and business foot traffic, race and ethnicity, and age structure are then investigated. The results reveal that, in a college town (Dane County), the most important heterogeneity is age structure, while, in a large city area (Milwaukee County), racial and ethnic heterogeneity becomes more apparent. Scenario studies further indicate a strong response of the spread rate to various reopening policies, which suggests that policy makers may need to take these heterogeneities into account very carefully when designing policies for mitigating the ongoing spread of COVID-19 and reopening.more » « less
An official website of the United States government
