skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A Cellular Automata Model for Dynamics and Control of Cardiac Arrhythmias
As a leading cause of death in 325,000 adults per year in the United States, a significant proportion of sudden cardiac arrest (SCA) result from arrhythmias. To better understand the onset of arrhythmias and its potential treatment with more rapid and effective control approaches, a two-dimensional 50 × 50 cellular automata (CA) model is used in this study to illustrate the propagation of electrical waves across its tissue, and a constant diastolic interval (DI) control mechanism is adopted to help stabilize and prevent cardiac arrhythmias. Simulations of various scenarios including normal conduction and spiral waves in the presence of scar, normal conduction and alternans under control conditions are shown. The results validate that the CA model and constant DI control method are very efficient and effective in the study of dynamics and control of cardiac arrhythmias.  more » « less
Award ID(s):
1661615
PAR ID:
10285353
Author(s) / Creator(s):
Date Published:
Journal Name:
ASME 2020 Dynamic Systems and Control Conference
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Loppini, Alessandro (Ed.)
    Cardiac myocytes synchronize through electrical signaling to contract heart muscles, facilitated by gap junctions (GJs) located in the intercalated disc (ID). GJs provide low-resistance pathways for electrical impulse propagation between myocytes, considered the primary mechanism for electrical communication in the heart. However, research indicates that conduction can persist without GJs. Ephaptic coupling (EpC), which depends on electrical fields in the narrow ID between adjacent myocytes, offers an alternative mechanism for cardiac conduction when GJs are impaired. Research suggests that EpC can enhance conduction velocity (CV) and reduce the likelihood of conduction block (CB), particularly when GJs are impaired, demonstrating the anti-arrhythmic potential of EpC. Reduced GJ communication increases the susceptibility of heart to arrhythmias due to ectopic or triggered activity, highlighting the pro-arrhythmic effect of GJ uncoupling. However, the interplay between GJs and EpC, and their roles in the initiation, dynamics, and termination of arrhythmias, remain unclear. Reentry, characterized by a loop of electrical activity, is a common mechanism underlying arrhythmogenesis in the heart. This study aims to explore the interplay between EpC and GJs on reentry initiation and its underlying dynamics. Specifically, we employed a two-dimensional (2D) discrete bidomain model that integrates EpC to simulate ephaptic conduction during reentry. We quantitatively assessed the outcomes of reentry initiation and the resulting dynamics across different levels of EpC, GJs, and initial perturbations. The results show that sufficiently strong EpC (i.e., sufficiently narrow clefts) tends to suppress reentry initiation, resulting in absent or non-sustained reentrant activity, while also introducing transient instability and heterogeneity into the cardiac dynamics. In contrast, relatively weak EpC (wide clefts) support sustained reentry with a stable rotor. Furthermore, we found that sufficiently strong EpC can lower the maximal dominant frequency observed during reentrant activity. Overall, this suggests that strong EpC exerts an anti-arrhythmic effect. 
    more » « less
  2. null (Ed.)
    Abstract Life‐threatening ventricular arrhythmias and sudden cardiac death are often preceded by cardiac alternans, a beat‐to‐beat oscillation in the T‐wave morphology or duration. However, given the spatiotemporal and structural complexity of the human heart, designing algorithms to effectively suppress alternans and prevent fatal rhythms is challenging. Recently, an antiarrhythmic constant diastolic interval pacing protocol was proposed and shown to be effective in suppressing alternans in 0‐, 1‐, and 2‐dimensional in silico studies as well as in ex vivo whole heart experiments. Herein, we provide a systematic review of the electrophysiological conditions and mechanisms that enable constant diastolic interval pacing to be an effective antiarrhythmic pacing strategy. We also demonstrate a successful translation of the constant diastolic interval pacing protocol into an ECG‐based real‐time control system capable of modulating beat‐to‐beat cardiac electrical activity and preventing alternans. Furthermore, we present evidence of the clinical utility of real‐time alternans suppression in reducing arrhythmia susceptibility in vivo. We provide a comprehensive overview of this promising pacing technique, which can potentially be translated into a clinically viable device that could radically improve the quality of life of patients experiencing abnormal cardiac rhythms. 
    more » « less
  3. The electrical signals triggering the heart's contraction are governed by non-linear processes that can produce complex irregular activity, especially during or preceding the onset of cardiac arrhythmias. Forecasts of cardiac voltage time series in such conditions could allow new opportunities for intervention and control but would require efficient computation of highly accurate predictions. Although machine-learning (ML) approaches hold promise for delivering such results, non-linear time-series forecasting poses significant challenges. In this manuscript, we study the performance of two recurrent neural network (RNN) approaches along with echo state networks (ESNs) from the reservoir computing (RC) paradigm in predicting cardiac voltage data in terms of accuracy, efficiency, and robustness. We show that these ML time-series prediction methods can forecast synthetic and experimental cardiac action potentials for at least 15–20 beats with a high degree of accuracy, with ESNs typically two orders of magnitude faster than RNN approaches for the same network size. 
    more » « less
  4. Optical techniques for recording and manipulating cellular electrophysiology have advanced rapidly in just a few decades. These developments allow for the analysis of cardiac cellular dynamics at multiple scales while largely overcoming the drawbacks associated with the use of electrodes. The recent advent of optogenetics opens up new possibilities for regional and tissue-level electrophysiological control and hold promise for future novel clinical applications. This article, which emerged from the international NOTICE workshop in 2018 1 , reviews the state-of-the-art optical techniques used for cardiac electrophysiological research and the underlying biophysics. The design and performance of optical reporters and optogenetic actuators are reviewed along with limitations of current probes. The physics of light interaction with cardiac tissue is detailed and associated challenges with the use of optical sensors and actuators are presented. Case studies include the use of fluorescence recovery after photobleaching and super-resolution microscopy to explore the micro-structure of cardiac cells and a review of two photon and light sheet technologies applied to cardiac tissue. The emergence of cardiac optogenetics is reviewed and the current work exploring the potential clinical use of optogenetics is also described. Approaches which combine optogenetic manipulation and optical voltage measurement are discussed, in terms of platforms that allow real-time manipulation of whole heart electrophysiology in open and closed-loop systems to study optimal ways to terminate spiral arrhythmias. The design and operation of optics-based approaches that allow high-throughput cardiac electrophysiological assays is presented. Finally, emerging techniques of photo-acoustic imaging and stress sensors are described along with strategies for future development and establishment of these techniques in mainstream electrophysiological research. 
    more » « less
  5. Abstract Heat conduction in solids is typically governed by the Fourier’s law describing a diffusion process due to the short wavelength and mean free path for phonons and electrons. Surface phonon polaritons couple thermal photons and optical phonons at the surface of polar dielectrics, possessing much longer wavelength and propagation length, representing an excellent candidate to support extraordinary heat transfer. Here, we realize clear observation of thermal conductivity mediated by surface phonon polaritons in SiO2nanoribbon waveguides of 20-50 nm thick and 1-10 μm wide and also show non-Fourier behavior in over 50-100 μm distance at room and high temperature. This is enabled by rational design of the waveguide to control the mode size of the surface phonon polaritons and its efficient coupling to thermal reservoirs. Our work laid the foundation for manipulating heat conduction beyond the traditional limit via surface phonon polaritons waves in solids. 
    more » « less