skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Analytical Insights into Ephaptic Coupling and Its Effect on Conduction Velocity
Abstract Cardiovascular disease continues to be the leading cause of death in the United States. A major contributing factor is cardiac arrhythmia, which results from irregular electrical activity in the heart. On a tissue level, cardiac conduction involves the spread of action potentials (AP) across the heart, enabling coordinated contraction of the myocardium. On a cellular level, the transmission of signals between cells is facilitated by low-resistance pathways formed by gap junctions (GJs). Recent experimental studies have sparked discussion on whether GJs play a dominant role in cell communication. Interestingly, research has revealed that GJ knockout mice can still demonstrate signal propagation in the heart, albeit more slowly and discontinuously, indicating the presence of an alternative mechanism for cardiac conduction. Unlike GJ-mediated propagation, ephaptic coupling (EpC) has emerged as a distinct form of electrical transmission, characterized by contactless electrochemical signaling across the narrow intercalated discs (IDs) between cardiomyocytes. Advancements in cardiac research have highlighted the crucial role of EpC in restoring conduction by increasing conduction velocity (CV), reducing conduction block (CB), and terminating reentry arrhythmias, particularly when GJs are impaired. However, most EpC studies are either numerical or experimental, while analytical studies on ephaptic conduction–an equally important aspect of understanding EpC–remain extremely limited. In this paper, we applied asymptotic theory to calculate the CV in the presence of weak EpC. To achieve this, we developed both continuous and discrete models to describe ephaptic conduction along a strand of cells. Ionic dynamics were modeled using the piecewise linear and cubic functions. The resulting system represents a bistable system with weak EpC. We calculated an expression for CV in the presence of weak EpC for both models, and validated our analytical results with numerical simulations. Additionally, we showed that under weak EpC, CV can increase if the distribution of INa is more prominent on the end membrane.  more » « less
Award ID(s):
2327184 2152115
PAR ID:
10649406
Author(s) / Creator(s):
;
Publisher / Repository:
Springer Science + Business Media
Date Published:
Journal Name:
Journal of Mathematical Biology
Volume:
91
Issue:
6
ISSN:
0303-6812
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Loppini, Alessandro (Ed.)
    Cardiac myocytes synchronize through electrical signaling to contract heart muscles, facilitated by gap junctions (GJs) located in the intercalated disc (ID). GJs provide low-resistance pathways for electrical impulse propagation between myocytes, considered the primary mechanism for electrical communication in the heart. However, research indicates that conduction can persist without GJs. Ephaptic coupling (EpC), which depends on electrical fields in the narrow ID between adjacent myocytes, offers an alternative mechanism for cardiac conduction when GJs are impaired. Research suggests that EpC can enhance conduction velocity (CV) and reduce the likelihood of conduction block (CB), particularly when GJs are impaired, demonstrating the anti-arrhythmic potential of EpC. Reduced GJ communication increases the susceptibility of heart to arrhythmias due to ectopic or triggered activity, highlighting the pro-arrhythmic effect of GJ uncoupling. However, the interplay between GJs and EpC, and their roles in the initiation, dynamics, and termination of arrhythmias, remain unclear. Reentry, characterized by a loop of electrical activity, is a common mechanism underlying arrhythmogenesis in the heart. This study aims to explore the interplay between EpC and GJs on reentry initiation and its underlying dynamics. Specifically, we employed a two-dimensional (2D) discrete bidomain model that integrates EpC to simulate ephaptic conduction during reentry. We quantitatively assessed the outcomes of reentry initiation and the resulting dynamics across different levels of EpC, GJs, and initial perturbations. The results show that sufficiently strong EpC (i.e., sufficiently narrow clefts) tends to suppress reentry initiation, resulting in absent or non-sustained reentrant activity, while also introducing transient instability and heterogeneity into the cardiac dynamics. In contrast, relatively weak EpC (wide clefts) support sustained reentry with a stable rotor. Furthermore, we found that sufficiently strong EpC can lower the maximal dominant frequency observed during reentrant activity. Overall, this suggests that strong EpC exerts an anti-arrhythmic effect. 
    more » « less
  2. null (Ed.)
    Connexins form intercellular communication channels, known as gap junctions (GJs), that facilitate diverse physiological roles, from long-range electrical and chemical coupling to coordinating development and nutrient exchange. GJs formed by different connexin isoforms harbour unique channel properties that have not been fully defined mechanistically. Recent structural studies on Cx46 and Cx50 defined a novel and stable open state and implicated the amino-terminal (NT) domain as a major contributor for isoform-specific functional differences between these closely related lens connexins. To better understand these differences, we constructed models corresponding to wildtype Cx50 and Cx46 GJs, NT domain swapped chimeras, and point variants at the 9th residue for comparative molecular dynamics (MD) simulation and electrophysiology studies. All constructs formed functional GJ channels, except the chimeric Cx46-50NT variant, which correlated with an introduced steric clash and increased dynamical behaviour (instability) of the NT domain observed by MD simulation. Single channel conductance correlated well with free-energy landscapes predicted by MD, but resulted in a surprisingly greater degree of effect. Additionally, we observed significant effects on transjunctional voltage-dependent gating (Vj gating) and/or open state dwell times induced by the designed NT domain variants. Together, these studies indicate intra- and inter-subunit interactions involving both hydrophobic and charged residues within the NT domains of Cx46 and Cx50 play important roles in defining GJ open state stability and single channel conductance, and establish the open state Cx46/50 structural models as archetypes for structure–function studies targeted at elucidating GJ channel mechanisms and the molecular basis of cataract-linked connexin variants. 
    more » « less
  3. Aldosterone-producing adenomas (APAs) are the commonest curable cause of hypertension. Most have gain-of-function somatic mutations of ion channels or transporters. Herein we report the discovery, replication and phenotype of mutations in the neuronal cell adhesion geneCADM1. Independent whole exome sequencing of 40 and 81 APAs found intramembranous p.Val380Asp or p.Gly379Asp variants in two patients whose hypertension and periodic primary aldosteronism were cured by adrenalectomy. Replication identified two more APAs with each variant (total,n = 6). The most upregulated gene (10- to 25-fold) in human adrenocortical H295R cells transduced with the mutations (compared to wildtype) was CYP11B2 (aldosterone synthase), and biological rhythms were the most differentially expressed process. CADM1 knockdown or mutation inhibited gap junction (GJ)-permeable dye transfer. GJ blockade by Gap27 increased CYP11B2 similarly to CADM1 mutation. Human adrenal zona glomerulosa (ZG) expression of GJA1 (the main GJ protein) was patchy, and annular GJs (sequelae of GJ communication) were less prominent in CYP11B2-positive micronodules than adjacent ZG. Somatic mutations ofCADM1cause reversible hypertension and reveal a role for GJ communication in suppressing physiological aldosterone production. 
    more » « less
  4. null (Ed.)
    As a leading cause of death in 325,000 adults per year in the United States, a significant proportion of sudden cardiac arrest (SCA) result from arrhythmias. To better understand the onset of arrhythmias and its potential treatment with more rapid and effective control approaches, a two-dimensional 50 × 50 cellular automata (CA) model is used in this study to illustrate the propagation of electrical waves across its tissue, and a constant diastolic interval (DI) control mechanism is adopted to help stabilize and prevent cardiac arrhythmias. Simulations of various scenarios including normal conduction and spiral waves in the presence of scar, normal conduction and alternans under control conditions are shown. The results validate that the CA model and constant DI control method are very efficient and effective in the study of dynamics and control of cardiac arrhythmias. 
    more » « less
  5. IntroductionWe recently showed that sub-kilohertz electrical stimulation of the afferent somata in the dorsal root ganglia (DRG) reversibly blocks afferent transmission. Here, we further investigated whether similar conduction block can be achieved by stimulating the nerve trunk with electrical peripheral nerve stimulation (ePNS). MethodsWe explored the mechanisms and parameters of conduction block by ePNS via ex vivo single-fiber recordings from two somatic (sciatic and saphenous) and one autonomic (vagal) nerves harvested from mice. Action potentials were evoked on one end of the nerve and recorded on the other end from teased nerve filaments, i.e., single-fiber recordings. ePNS was delivered in the middle of the nerve trunk using a glass suction electrode at frequencies of 5, 10, 50, 100, 500, and 1000 Hz. ResultsSuprathreshold ePNS reversibly blocks axonal neural transmission of both thinly myelinated Aδ-fiber axons and unmyelinated C-fiber axons. ePNS leads to a progressive decrease in conduction velocity (CV) until transmission blockage, suggesting activity-dependent conduction slowing. The blocking efficiency is dependent on the axonal conduction velocity, with Aδ-fibers efficiently blocked by 50–1000 Hz stimulation and C-fibers blocked by 10–50 Hz. The corresponding NEURON simulation of action potential transmission indicates that the disrupted transmembrane sodium and potassium concentration gradients underly the transmission block by the ePNS. DiscussionThe current study provides direct evidence of reversible Aδ- and C-fiber transmission blockage by low-frequency (<100 Hz) electrical stimulation of the nerve trunk, a previously overlooked mechanism that can be harnessed to enhance the therapeutic effect of ePNS in treating neurological disorders. 
    more » « less