skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: CodedBulk: Inter-Datacenter Bulk Transfers using Network Coding
This paper presents CodedBulk, a system for high-throughput inter-datacenter bulk transfers. At its core, CodedBulk uses network coding, a technique from the coding theory community, that guarantees optimal throughput for individual bulk transfers. Prior attempts to using network coding in wired networks have faced several pragmatic and fundamental barriers. CodedBulk resolves these barriers by exploiting the unique properties of inter-datacenter networks, and by using a custom-designed hop-by-hop flow control mechanism that enables efficient realization of network coding atop existing transport protocols. An end-to end CodedBulk implementation running on a geo-distributed inter-datacenter network improves bulk transfer throughput by 1.2−2.5× compared to state-of-the-art mechanisms that do not use network coding.  more » « less
Award ID(s):
1704742
PAR ID:
10285439
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
USENIX Symposium on Networked Systems Design and Implementation
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Datacenters need networks that support both low-latency and high-bandwidth packet delivery to meet the stringent requirements of modern applications. We present Opera, a dynamic network that delivers latency-sensitive traffic quickly by relying on multi-hop forwarding in the same way as expander-graph-based approaches, but provides near-optimal bandwidth for bulk flows through direct forwarding over time-varying source-to-destination circuits. Unlike prior approaches, Opera requires no separate electrical network and no active circuit scheduling. The key to Opera's design is the rapid and deterministic reconfiguration of the network, piece-by-piece, such that at any moment in time the network implements an expander graph, yet, integrated across time, the network provides bandwidth-efficient single-hop paths between all racks. We show that Opera supports low-latency traffic with flow completion times comparable to cost-equivalent static topologies, while delivering up to 4x the bandwidth for all-to-all traffic and supporting up to 60% higher load for published datacenter workloads. 
    more » « less
  2. null (Ed.)
    Low-latency online services have strict Service Level Objectives (SLOs) that require datacenter systems to support high throughput at microsecond-scale tail latency. Dataplane operating systems have been designed to scale up multi-core servers with minimal overhead for such SLOs. However, as application demands continue to increase, scaling up is not enough, and serving larger demands requires these systems to scale out to multiple servers in a rack. We present RackSched, the first rack-level microsecond-scale scheduler that provides the abstraction of a rack-scale computer (i.e., a huge server with hundreds to thousands of cores) to an external service with network-system co-design. The core of RackSched is a two-layer scheduling framework that integrates inter-server scheduling in the top-of-rack (ToR) switch with intra-server scheduling in each server. We use a combination of analytical results and simulations to show that it provides near-optimal performance as centralized scheduling policies, and is robust for both low-dispersion and high-dispersion workloads. We design a custom switch data plane for the inter-server scheduler, which realizes power-of-k- choices, ensures request affinity, and tracks server loads accurately and efficiently. We implement a RackSched prototype on a cluster of commodity servers connected by a Barefoot Tofino switch. End-to-end experiments on a twelve-server testbed show that RackSched improves the throughput by up to 1.44x, and scales out the throughput near linearly, while maintaining the same tail latency as one server until the system is saturated. 
    more » « less
  3. NextG cellular networks are designed to meet Quality of Service requirements for various applications in and beyond smartphones and mobile devices. However, lacking introspection into the 5G Radio Access Network (RAN) application and transport layer designers are ill-poised to cope with the vagaries of the wireless last hop to a mobile client, while 5G network operators run mostly closed networks, limiting their potential for co-design with the wider internet and user applications. This paper presents NR-Scope, a passive, incrementally-deployable, and independently-deployable Standalone 5G network telemetry system that can stream fine-grained RAN capacity, latency, and retransmission information to application servers to enable better millisecond scale, application-level decisions on offered load and bit rate adaptation than end-to-end latency measurements or end-to-end packet losses currently permit. Our experimental evaluation on various 5G Standalone base stations demonstrates NR-Scope can achieve less than 0.1% throughput error estimation for every UE in a RAN. The code is available at https://github.com/PrincetonUniversity/NR-Scope. 
    more » « less
  4. Application-layer transfer configurations play a crucial role in achieving desirable performance in high-speed networks. However, finding the optimal configuration for a given transfer task is a difficult problem as it depends on various factors including dataset characteristics, network settings, and background traffic. The state-of-the-art transfer tuning solutions rely on real-time sample transfers to evaluate various configurations and estimate the optimal one. However, existing approaches to run sample transfers incur high delay and measurement errors, thus significantly limit the efficiency of the transfer tuning algorithms. In this paper, we introduce adaptive feed forward deep neural network (DNN) to minimize the error rate of sample transfers without increasing their execution time. We ran 115K file transfers in four different high-speed networks and used their logs to train an adaptive DNN that can quickly and accurately predict the throughput of sample transfers by analyzing instantaneous throughput values. The results gathered in various networks with rich set of transfer configurations indicate that the proposed model reduces error rate by up to 50% compared to the state-of-the-art solutions while keeping the execution time low. We also show that one can further reduce delay or error rate by tuning hyperparameters of the model to meet specific needs of user or application. Finally, transfer learning analysis reveals that the model developed in one network would yield accurate results in other networks with similar transfer convergence characteristics, alleviating the needs to run an extensive data collection and model derivation efforts for each network. 
    more » « less
  5. null (Ed.)
    While prior work has explored many proposed datacenter designs, only two designs, Clos-based and expander-based, are generally considered practical because they can scale using commodity switching chips. Prior work has used two diferent metrics, bisection band- width and throughput, for evaluating these topologies at scale. Little is known, theoretically or practically, how these metrics relate to each other. Exploiting characteristics of these topologies, we prove an upper bound on their throughput, then show that this upper bound better estimates worst-case throughput than all previously proposed throughput estimators and scales better than most of them. Using this upper bound, we show that for expander-based topologies, unlike Clos, beyond a certain size of the network, no topology can have full throughput, even if it has full bisection band- width; in fact, even relatively small expander-based topologies fail to achieve full throughput. We conclude by showing that using throughput to evaluate datacenter performance instead of bisection bandwidth can alter conclusions in prior work about datacenter cost, manageability, and reliability. 
    more » « less