skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: An uncontaminated measurement of the escaping Lyman continuum at z ∼ 3
ABSTRACT Observations of reionization-era analogues at z ∼ 3 are a powerful tool for constraining reionization. Rest-ultraviolet observations are particularly useful, in which both direct and indirect tracers of ionizing-photon production and escape can be observed. We analyse a sample of 124 z ∼ 3 galaxies from the Keck Lyman Continuum Spectroscopic Survey, with sensitive spectroscopic measurements of the Lyman continuum region. We present a method of removing foreground contamination from our sample using high-resolution, multiband Hubble Space Telescope imaging. We re-measure the global properties of the cleaned sample of 13 individually detected Lyman continuum sources and 107 individually undetected sources, including a sample-averaged absolute escape fraction of fesc, abs = 0.06 ± 0.01 and a sample-averaged ratio of ionizing to non-ionizing ultraviolet flux density of 〈f900/f1500〉out = 0.040 ± 0.006, corrected for attenuation from the intergalactic and circumgalactic media. Based on composite spectra, we also recover a strong positive correlation between 〈f900/f1500〉out and Lyα equivalent width (Wλ(Ly$$\rm \alpha$$)) and a negative correlation between 〈f900/f1500〉out and UV luminosity. As in previous work, we interpret the relationship between 〈f900/f1500〉out and Wλ(Ly$$\rm \alpha$$) in terms of the modulation of the escape of ionizing radiation from star-forming galaxies based on the covering fraction of neutral gas. We also use a Wλ(Ly$$\rm \alpha$$)-weighted 〈f900/f1500〉out to estimate an ionizing emissivity from star-forming galaxies at z ∼ 3 as ϵLyC ≃ 5.5 × 1024 erg s−1 Hz−1 Mpc−3. This estimate, evaluated using the uncontaminated sample of this work, affirms that the contribution of galaxies to the ionizing background at z ∼ 3 is comparable to that of active galactic nuclei.  more » « less
Award ID(s):
2009278
PAR ID:
10285640
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
505
Issue:
2
ISSN:
0035-8711
Page Range / eLocation ID:
2447 to 2467
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT The connection between the escape fraction of ionizing radiation (fesc) and the properties of galaxies, such as stellar mass ($$\rm M_{\rm *}$$), age, star-formation rate (SFR), and dust content, are key inputs for reionization models, but many of these relationships remain untested at high redshift. We present an analysis of a sample of 96 $$z$$ ∼ 3 galaxies from the Keck Lyman Continuum Spectroscopic Survey (KLCS). These galaxies have both sensitive Keck/LRIS spectroscopic measurements of the Lyman continuum (LyC) region, and multiband photometry that places constraints on stellar population parameters. We construct composite spectra from subsamples binned as a function of galaxy property and quantify the ionizing-photon escape for each composite. We find a significant anti-correlation between fesc and $$\rm M_{\rm *}$$, consistent with predictions from cosmological zoom-in simulations. We also find significant anti-correlation between fesc and E(B−V), encoding the underlying physics of LyC escape in our sample. We also find no significant correlation between fesc and either stellar age or specific SFR (= SFR/$$\rm M_{\rm *}$$), challenging interpretations that synchronize recent star formation and favorable conditions for ionizing escape. The galaxy properties now shown to correlate with fesc in the KLCS are Lyα equivalent width, UV Luminosity, $$\rm M_{\rm *}$$, SFR, and E(B−V), but not age or sSFR. This comprehensive analysis of galaxy properties and LyC escape at high redshift will be used to guide future models and observations of the reionization epoch. 
    more » « less
  2. ABSTRACT New JWST observations are revealing the first galaxies to be prolific producers of ionizing photons, which we argue gives rise to a tension between different probes of reionization. Over the last two decades, a consensus has emerged where star-forming galaxies are able to generate enough photons to drive reionization, given reasonable values for their number densities, ionizing efficiencies $$\xi _{\rm ion}$$ (per unit ultraviolet luminosity), and escape fractions $$f_{\rm esc}$$. However, some new JWST observations infer high values of $$\xi _{\rm ion}$$ during reionization and an enhanced abundance of earlier ($$z\gtrsim 9$$) galaxies, dramatically increasing the number of ionizing photons produced at high z. Simultaneously, recent low-z studies predict significant escape fractions for faint reionization-era galaxies. Put together, we show that the galaxies we have directly observed ($$M_{\rm UV} < -15$$) not only can drive reionization, but would end it too early. That is, our current galaxy observations, taken at face value, imply an excess of ionizing photons and thus a process of reionization in tension with the cosmic microwave background and Lyman-$$\alpha$$ forest. Considering galaxies down to $$M_{\rm UV}\approx -11$$, below current observational limits, only worsens this tension. We discuss possible avenues to resolve this photon budget crisis, including systematics in either theory or observations. 
    more » « less
  3. While the shape of the Lyα profile is viewed as one of the best tracers of ionizing-photon escape fraction (fesc) within low redshift (z~0.3) surveys of the Lyman continuum, this connection remains untested at high redshift. Here, we combine deep, rest-UV Keck/LRIS spectra of 80 objects from the Keck Lyman Continuum Spectroscopic Survey with rest-optical Keck/MOSFIRE spectroscopy in order to examine potential correlations between Lyα profile shape and the escape of ionizing radiation within z~3 star-forming galaxies. We measure the velocity separation between double-peaked Lyα emission structure (vsep), between red-side Lyα emission peaks and systemic (vLyα,red), and between red-side emission peaks and low-ionization interstellar absorption lines (vLyα−LIS). We find that the IGM-corrected ratio of ionizing to non-ionizing flux density is significantly higher in KLCS objects with lower vLyα,red. We find no significant trend between measures of ionizing-photon escape and vLyα−LIS. We compare our results to measurements of z~0.3 "Green Peas" from the literature and find that KLCS objects have larger vsep at fixed vLyα,red, larger fesc at fixed vLyα,red, and higher vLyα,red overall than z~0.3 analogs. We conclude that the Lyα profile shapes of our high-redshift sources are fundamentally different, and that measurements of profile shape such as vLyα,red map on to fesc in different ways. We caution against building reionization-era fesc diagnostics based purely on Lyα profiles of low-redshift dwarf galaxies. Tracing vsep, vLyα,red, and fesc in a larger sample of z~3 galaxies will reveal how these variables may be connected for galaxies at the epoch of reionization. 
    more » « less
  4. ABSTRACT We present an updated model of the cosmic ionizing background from the UV to the X-rays. Relative to our previous model, the new model provides a better match to a large number of up-to-date empirical constraints, including: (1) new galaxy and AGN luminosity functions; (2) stellar spectra including binary stars; (3) obscured and unobscured AGN; (4) a measurement of the non-ionizing UV background; (5) measurements of the intergalactic H i and He ii photoionization rates at z ∼ 0−6; (6) the local X-ray background; and (7) improved measurements of the intergalactic opacity. In this model, AGN dominate the H i ionizing background at z ≲ 3 and star-forming galaxies dominate it at higher redshifts. Combined with the steeply declining AGN luminosity function beyond z ∼ 2, the slow evolution of the H i ionization rate inferred from the high-redshift H i Ly α forest requires an escape fraction from star-forming galaxies that increases with redshift (a population-averaged escape fraction of $$\approx 1{{\ \rm per\ cent}}$$ suffices to ionize the intergalactic medium at z = 3 when including the contribution from AGN). We provide effective photoionization and photoheating rates calibrated to match the Planck 2018 reionization optical depth and recent constraints from the He ii Ly α forest in hydrodynamic simulations. 
    more » « less
  5. ABSTRACT We present the first statistical analysis of kinematically resolved, spatially extended $$\rm Ly\alpha$$ emission around z = 2–3 galaxies in the Keck Baryonic Structure Survey (KBSS) using the Keck Cosmic Web Imager (KCWI). Our sample of 59 star-forming galaxies (zmed = 2.29) comprises the subset with typical KCWI integration times of ∼5 h and with existing imaging data from the Hubble Space Telescope and/or adaptive optics-assisted integral field spectroscopy. The high-resolution images were used to evaluate the azimuthal dependence of the diffuse $$\rm Ly\alpha$$ emission with respect to the stellar continuum within projected galactocentric distances of ≲30 proper kpc. We introduce cylindrically projected 2D spectra (CP2D) that map the averaged $$\rm Ly\alpha$$ spectral profile over a specified range of azimuthal angle, as a function of impact parameter around galaxies. The averaged CP2D spectrum of all galaxies shows clear signatures of $$\rm Ly\alpha$$ resonant scattering by outflowing gas. We stacked the CP2D spectra of individual galaxies over ranges of azimuthal angle with respect to their major axes. The extended $$\rm Ly\alpha$$ emission along the galaxy principal axes is statistically indistinguishable, with residual asymmetry of ≤2 per cent (∼2σ) of the integrated $$\rm Ly\alpha$$ emission. The symmetry implies that the $$\rm Ly\alpha$$ scattering medium is dominated by outflows in all directions within 30 kpc. Meanwhile, we find that the blueshifted component of $$\rm Ly\alpha$$ emission is marginally stronger along galaxy minor axes for galaxies with relatively weak $$\rm Ly\alpha$$ emission. We speculate that this weak directional dependence of $$\rm Ly\alpha$$ emission becomes discernible only when the $$\rm Ly\alpha$$ escape fraction is low. These discoveries highlight the need for similar analyses in simulations with $$\rm Ly\alpha$$ radiative transfer modelling. 
    more » « less