skip to main content


Title: High-throughput dissection of the thermodynamic and conformational properties of a ubiquitous class of RNA tertiary contact motifs

Despite RNA’s diverse secondary and tertiary structures and its complex conformational changes, nature utilizes a limited set of structural “motifs”—helices, junctions, and tertiary contact modules—to build diverse functional RNAs. Thus, in-depth descriptions of a relatively small universe of RNA motifs may lead to predictive models of RNA tertiary conformational landscapes. Motifs may have different properties depending on sequence and secondary structure, giving rise to subclasses that expand the universe of RNA building blocks. Yet we know very little about motif subclasses, given the challenges in mapping conformational properties in high throughput. Previously, we used “RNA on a massively parallel array” (RNA-MaP), a quantitative, high-throughput technique, to study thousands of helices and two-way junctions. Here, we adapt RNA-MaP to study the thermodynamic and conformational properties of tetraloop/tetraloop receptor (TL/TLR) tertiary contact motifs, analyzing 1,493 TLR sequences from different classes. Clustering analyses revealed variability in TL specificity, stability, and conformational behavior. Nevertheless, natural GAAA/11ntR TL/TLRs, while varying in tertiary stability by ∼2.5 kcal/mol, exhibited conserved TL specificity and conformational properties. Thus, RNAs may tune stability without altering the overall structure of these TL/TLRs. Furthermore, their stability correlated with natural frequency, suggesting thermodynamics as the dominant selection pressure. In contrast, other TL/TLRs displayed heterogenous conformational behavior and appear to not be under strong thermodynamic selection. Our results build toward a generalizable model of RNA-folding thermodynamics based on the properties of isolated motifs, and our characterized TL/TLR library can be used to engineer RNAs with predictable thermodynamic and conformational behavior.

 
more » « less
NSF-PAR ID:
10285779
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Proceedings of the National Academy of Sciences
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
Volume:
118
Issue:
33
ISSN:
0027-8424
Page Range / eLocation ID:
Article No. e2109085118
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Nearly two decades after Westhof and Michel first proposed that RNA tetraloops may interact with distal helices, tetraloop–receptor interactions have been recognized as ubiquitous elements of RNA tertiary structure. The unique architecture of GNRA tetraloops ( N =any nucleotide, R =purine) enables interaction with a variety of receptors, e.g., helical minor grooves and asymmetric internal loops. The most common example of the latter is the GAAA tetraloop–11 nt tetraloop receptor motif. Biophysical characterization of this motif provided evidence for the modularity of RNA structure, with applications spanning improved crystallization methods to RNA tectonics. In this review, we identify and compare types of GNRA tetraloop–receptor interactions. Then we explore the abundance of structural, kinetic, and thermodynamic information on the frequently occurring and most widely studied GAAA tetraloop–11 nt receptor motif. Studies of this interaction have revealed powerful paradigms for structural assembly of RNA, as well as providing new insights into the roles of cations, transition states and protein chaperones in RNA folding pathways. However, further research will clearly be necessary to characterize other tetraloop–receptor and long-range tertiary binding interactions in detail – an important milestone in the quantitative prediction of free energy landscapes for RNA folding. 
    more » « less
  2. Abstract

    Small molecule microarray (SMM) technology has become a powerful tool used in high‐throughput screening for target‐based drug discovery. One area in which SMMs have found use is the identification of small molecule ligands for RNA. RNAs with unique secondary or tertiary three‐dimensional structures are considered to be attractive targets for small molecules. Complex RNA structures can form hydrophobic pockets suitable for small molecule binding, representing an opportunity for developing novel therapeutics. Our lab has previously taken a target‐based approach, screening a single target against many small molecules on an SMM platform. Here, we report a screening protocol for SMMs to investigate multiple RNAs simultaneously using multi‐color imaging. By introducing a mixture containing different fluorophore‐labeled RNAs, the fluorescence signal of each binding event can be observed simultaneously. Thus, the specificity of a hit compound binding to one RNA target over other highly abundant RNAs (such as tRNA or rRNA) can be easily evaluated. © 2020 Wiley Periodicals LLC.

    Basic Protocol: RNA screening on SMMs by multi‐color imaging

    Support Protocol 1: Preparation of SMM slides

    Support Protocol 2: Fluorophore labeling of RNA through maleimide chemistry

     
    more » « less
  3. Intrinsically disordered proteins (IDPs) fold upon binding to select/recruit multiple partners, morph around the partner's structure, and exhibit allostery. However, we do not know whether these properties emerge passively from disorder, or rather are encoded into the IDP's folding mechanisms. A main reason for this gap is the lack of suitable methods to dissect the energetics of IDP conformational landscapes without partners. Here we introduce such an approach that we term molecular LEGO, and apply it to NCBD, a helical, molten globule–like IDP, as proof of concept. The approach entails the experimental and computational characterization of the protein, its separate secondary structure elements (LEGO building blocks), and their supersecondary combinations. Comparative analysis uncovers specific, yet inconspicuous, energetic biases in the conformational/folding landscape of NCBD, including 1) strong local signals that define the three native helices, 2) stabilization of helix–helix interfaces via soft pairwise tertiary interactions, 3) cooperative stabilization of a heterogeneous three-helix bundle fold, and 4) a dynamic exchange between sets of tertiary interactions (native and nonnative) that recapitulate the different structures NCBD adopts in complex with various partners. Crucially, a tug of war between sets of interactions makes NCBD gradually shift between structural subensembles as a conformational rheostat. Such conformational rheostatic behavior provides a built-in mechanism to modulate binding and switch/recruit partners that is likely at the core of NCBD's function as transcriptional coactivator. Hence, the molecular LEGO approach emerges as a powerful tool to dissect the conformational landscapes of unbound IDPs and rationalize their functional mechanisms. 
    more » « less
  4. The ribosome is a large ribonucleoprotein assembly that uses diverse and complex molecular interactions to maintain proper folding. In vivo assembled ribosomes have been isolated using MS2 tags installed in either the 16S or 23S ribosomal RNAs (rRNAs), to enable studies of ribosome structure and function in vitro . RNA tags in the Escherichia coli large ribosomal (50S) subunit have commonly been inserted into an extended helix H98 in 23S rRNA, as this addition does not affect cellular growth or in vitro ribosome activity. Here, we find that E. coli 50S subunits with MS2 tags inserted in H98 are destabilized compared to wild type (WT) 50S subunits. We identify the loss of RNA-RNA tertiary contacts that bridge helices H1, H94, and H98 as the cause of destabilization. Using cryogenic electron microscopy (cryo-EM), we show that this interaction is disrupted by the addition of the MS2 tag and can be restored through the insertion of a single adenosine in the extended H98 helix. This work establishes ways to improve MS2 tags in the 50S subunit that maintain ribosome stability and investigates a complex RNA tertiary structure that may be important for stability in various bacterial ribosomes. 
    more » « less
  5. Inter-helix contact prediction is to identify residue contact across different helices in α-helical integral membrane proteins. Despite the progress made by various computational methods, contact prediction remains as a challenging task, and there is no method to our knowledge that directly tap into the contact map in an alignment free manner. We build 2D contact models from an independent dataset to capture the topological patterns in the neighborhood of a residue pair depending it is a contact or not, and apply the models to the state-of-art method's predictions to extract the features reflecting 2D inter-helix contact patterns. A secondary classifier is trained on such features. Realizing that the achievable improvement is intrinsically hinged on the quality of original predictions, we devise a mechanism to deal with the issue by introducing, 1) partial discretization of original prediction scores to more effectively leverage useful information 2) fuzzy score to assess the quality of the original prediction to help with selecting the residue pairs where improvement is more achievable. The cross-validation results show that the prediction from our method outperforms other methods including the state-of-the-art method (DeepHelicon) by a notable degree even without using the refinement selection scheme. By applying the refinement selection scheme, our method outperforms the state-of-the-art method significantly in these selected sequences. 
    more » « less