skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The Long Neglected Cycloidal Mass Analyzer
In 1938, Walker Bleakney and John A. Hipple first described the cycloidal mass analyzer as the only mass analyzer configuration capable of “perfect” ion focusing. Why has their geometry been largely neglected for many years and how might it earn a respectable place in the world of modern chemical analysis? This Perspective explores the properties of the cycloidal mass analyzer and identifies the lack of suitable ion array detectors as a significant reason why cycloidal mass analyzers are not widely used. The recent development of capacitive transimpedance amplifier array detectors can enable several techniques using cycloidal mass analyzers including spatially coded apertures and single particle mass analysis with a “virtual-slit”, helping the cycloidal mass analyzer earn a respectable place in chemical analysis.  more » « less
Award ID(s):
1632069
PAR ID:
10285874
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Analytical Chemistry
ISSN:
0003-2700
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract With the advent of technologies such as ion array detectors and high energy permanent magnet materials, there is renewed interest in the unique focusing properties of the cycloidal mass analyzer and its ability to enable small, high‐resolution, and high‐sensitivity instruments. However, most literature dealing with the design of cycloidal mass analyzers assumes a single channel detector because at the time of those publications, compatible multichannel detectors were not available. This manuscript introduces and discusses considerations and a procedure for designing cycloidal mass analyzers coupled with focal plane ion array detectors. To arrive at a set of relevant design considerations, we first review the unique focusing properties of the cycloidal mass analyzer and then present calculations detailing how the dimensions and position of the focal plane array detector relative to the ion source determine the possible mass ranges and resolutions of a cycloidal mass analyzer. We present derivations and calculations used to determine the volume of homogeneous electric and magnetic fields needed to contain the ion trajectories and explore the relationship between electric and magnetic field homogeneity on resolving power using finite element analysis (FEA) simulations. A set of equations relating the electric field homogeneity to the geometry of the electric sector electrodes was developed by fitting homogeneity values from 78 different FEA models. Finally, a sequence of steps is suggested for designing a cycloidal mass analyzer employing an array detector. 
    more » « less
  2. In situ measurements of the spatiotemporal distribution of dissolved gases in the ocean are useful for a wide variety of applications including monitoring biogeochemical cycles (e.g., methane, oxygen, and carbon dioxide fluxes), detecting pollutants, studying submarine groundwater discharge, and tracking chemical gradients in water columns or sediment interfaces. Over the past two decades, underwater membrane inlet mass spectrometry has emerged as a leading technology for in situ dissolved gas analysis, leveraging various mass analyzers such as quadrupole, ion trap, and cycloidal systems. While quadrupoles and ion traps face challenges such as water vapor interference and resolution limitations, cycloidal analyzers offer higher resolution at low mass-to-charge ratios with reduced power requirements. However, they have historically suffered from sensitivity and sequential analysis limitations. Recent advances, including ion array detectors and computational sensing, now enable simultaneous mass detection and improved sensitivity in cycloidal mass analyzers. This study introduces the development of an underwater coded aperture miniature mass spectrometer (UW-CAMMS), incorporating a cycloidal mass analyzer, ion array detector, and spatially coded apertures. A low-power electronic control system for the UW-CAMMS is designed and characterized, with performance comparable to laboratory-based systems, showcasing progress toward efficient, compact underwater dissolved gas monitoring. This technology can be used to study dynamic processes in marine, freshwater, and brackish systems with high spatial and temporal resolution. 
    more » « less
  3. Cryptographic (crypto) API misuses often cause security vulnerabilities, so static and dynamic analyzers were recently proposed to detect such misuses. These analyzers differ in strengths and weaknesses, and they can miss bugs. Motivated by the inherent limitations of existing analyzers, we study runtime verification (RV) as an alternative for crypto API misuse detection. RV monitors program runs against formal specifications and was shown to be effective and efficient for amplifying the bug-finding ability of software tests. We focus on the popular JCA crypto API and write 22 RV specifications based on expert-validated rules in a static analyzer. We monitor these specifications while running tests in five benchmarks. Lastly, we compare the accuracy of our RV-based approach, RVSec, with those of three state-of-the-art crypto API misuses detectors: CogniCrypt, CryptoGuard, and CryLogger. RVSec has higher accuracy in four benchmarks and is on par with CryptoGuard in the fifth. Overall, RVSec achieves an average F1 measure of 95%, compared with 83%, 78%, and 86% for CogniCrypt, CryptoGuard, and CryLogger, respectively. We show that RV is effective for detecting crypto API misuses and highlight the strengths and limitations of these tools. We also discuss how static and dynamic analysis can complement each other for detecting crypto API misuses. 
    more » « less
  4. A planar tandem differential mobility spectrometer was integrated with a middle reactive stage to fragment ions which were mobility selected in a first analyzer stage using characteristic compensation and separation fields. Fragmentation occurred in air at ambient pressure of 660 Torr (8.8 kPa) with electric fields of 10 to 35 kV cm −1 (E/N of 52 to 180 Td) between two 1 mm wide metal strips, located on each analyzer plate between the first and second mobility stages. Field induced fragmentation (FIF) spectra were produced by characterizing, in a last stage, the mobilities of fragment ions from protonated monomers of 43 oxygen-containing volatile organic compounds from five chemical classes. The extent of fragmentation was proportional to E/N with alcohols, aldehydes, and ethers undergoing multiples steps of fragmentation; acetates fragmented only to a single ion, protonated acetic acid. In contrast, fragmentation of ketones occurred only for methyl i-butyl ketone and 2-hexanone. Fragment ion identities were supported by mass-analysis and known fragmentation routes and suggested that field induced fragmentation at ambient pressure can introduce structural information into FIF spectra, establishing a foundation for chemical identification using mobility methods. 
    more » « less
  5. A new miniature coaxial ion trap mass analyzer with a rectilinear ion guide has been constructed using a combination of planar and cylindrical electrodes. The results reported here focus on characterizing the performance of the rectilinear ion guide and simplified toroidal ion trap components. The simplified toroidal ion trap was found to have an ion capacity in excess of 105 ions and mass spectral resolution of 0.5–0.6 when used as a mass analyzer. The ion storage efficiency within the toroidal trapping region was evaluated and found the stored ion population decreased exponentially with storage time. Ion losses depended slightly on the stored βz condition. Ion losses within the toroidal region are attributed primarily to field instabilities at the intersection point of the two components while charge exchange reactions were observed but considered a minor loss mechanism. The ability to mass selectively ejection ions of a specific mass from the toroidal trapping region was characterized and found to approach 100 % efficiency under appropriate ejection conditions. 
    more » « less