skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Considerations of the biosynthesis and molecular diversity of tolyporphins
Tolyporphins A–R constitute fundamentally distinct members of the tetrapyrrole pigments of life family. The 18 members present diversity at multiple levels including the chromophore (dioxobacteriochlorin, oxochlorin, porphyrin); composition of the pyrroline substituents (hydroxy, acetoxy, or one of four C -glycosides); and stereochemical configuration of the pyrroline substituents. Eleven of the 18 tolyporphins contain at least one C -glycoside; each C -glycoside has a β, d configuration and lacks a 6′-hydroxy group: 3′,6′-dideoxygalactose (common name abequose), 2′- O -acetyl-3′,6′-dideoxygalactose (2′- O -acetylabequose), 6′-deoxygalactose ( d -fucose), or 6′-deoxygulose (antiarose). Rare are such glycosides outside of tolyporphins: (2′- O -acetyl)abequose is reported only in the glycan polymer attached to the cell wall of two strains of Gram-negative bacteria, and antiarose is reported in one bacterial natural product and ∼50 plant cardiac glycosides. Eight of the 18 tolyporphins are bis( C -glycosides), an exceptionally uncommon motif in natural products. The biosynthetic pathways to the family of tolyporphins remain unknown. Regardless of such diversity, each tolyporphin member shares a common pattern of perimeter methyl substituents that coheres with derivation from uroporphyrinogen III, the universal precursor in the established pathway to native tetrapyrroles. Here, transformations required to convert uroporphyrinogen III to all 18 tolyporphins are considered in the context of plausible biosynthetic pathways. Heme d 1 , perhaps the closest relative (yet still a distant cousin) of tolyporphins, and for which key biosynthetic transformations remain undeciphered, provides a point of reference. Taken together, the work provides the foundation for bioinformatic searching for enzymes associated with the biosynthesis and diversification of tolyporphins.  more » « less
Award ID(s):
1760839
PAR ID:
10285891
Author(s) / Creator(s):
Date Published:
Journal Name:
New Journal of Chemistry
Volume:
45
Issue:
27
ISSN:
1144-0546
Page Range / eLocation ID:
12097 to 12107
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Tolyporphins were discovered some 30 years ago as part of a global search for antineoplastic compounds from cyanobacteria. To date, the culture HT-58-2, comprised of a cyanobacterium–microbial consortium, is the sole known producer of tolyporphins. Eighteen tolyporphins are now known—each is a free base tetrapyrrole macrocycle with a dioxobacteriochlorin (14), oxochlorin (3), or porphyrin (1) chromophore. Each compound displays two, three, or four open β-pyrrole positions and two, one, or zero appended C-glycoside (or –OH or –OAc) groups, respectively; the appended groups form part of a geminal disubstitution motif flanking the oxo moiety in the pyrroline ring. The distinct structures and repertoire of tolyporphins stand alone in the large pigments-of-life family. Efforts to understand the cyanobacterial origin, biosynthetic pathways, structural diversity, physiological roles, and potential pharmacological properties of tolyporphins have attracted a broad spectrum of researchers from diverse scientific areas. The identification of putative biosynthetic gene clusters in the HT-58-2 cyanobacterial genome and accompanying studies suggest a new biosynthetic paradigm in the tetrapyrrole arena. The present review provides a comprehensive treatment of the rich science concerning tolyporphins. 
    more » « less
  2. Isopropyl 3-deoxy-α-D- ribo -hexopyranoside (isopropyl 3-deoxy-α-D-glucopyranoside), C 9 H 18 O 5 , (I), crystallizes from a methanol–ethyl acetate solvent mixture at room temperature in a 4 C 1 chair conformation that is slightly distorted towards the C5 S C1 twist-boat form. A comparison of the structural parameters in (I), methyl α-D-glucopyranoside, (II), α-D-glucopyranosyl-(1→4)-D-glucitol (maltitol), (III), and 3-deoxy-α-D- ribo -hexopyranose (3-deoxy-α-D-glucopyranose), (IV), shows that most endocyclic and exocyclic bond lengths, valence bond angles and torsion angles in the aldohexopyranosyl rings are more affected by anomeric configuration, aglycone structure and/or the conformation of exocyclic substituents, such as hydroxymethyl groups, than by monodeoxygenation at C3. The structural effects observed in the crystal structures of (I)–(IV) were confirmed though density functional theory (DFT) calculations in computed structures (I) c –(IV) c . Exocyclic hydroxymethyl groups adopt the gauche – gauche ( gg ) conformation (H5 anti to O6) in (I) and (III), and the gauche – trans ( gt ) conformation (C4 anti to O6) in (II) and (IV). The O -glycoside linkage conformations in (I) and (III) resemble those observed in disaccharides containing β-(1→4) linkages. 
    more » « less
  3. Abstract C-Alkyl glycosides represent an attractive class of nonhydrolyzable carbohydrate mimetics which possess enormous potential as next-generation therapeutics. Methods for the direct stereoselective synthesis of C-alkyl glycosides with a broad substrate tolerance are limited, however. This is especially in the case of β-linked C-alkyl glycosides, where direct methods for synthesis from commonly available coupling partners remain limited. This Account describes the evolution of our laboratory’s studies on glycosyl sulfonate chemistry from a method for the construction of simple β-linked 2-deoxy-sugars to a technology for the direct synthesis of β-linked acyl and homoacyl glycosides that can be elaborated into more complex structures. 1 Introduction 2 Glycosyl Sulfonates 3 Glycosyl Sulfonates in Oligosaccharide Synthesis 4 Matching Donor and Sulfonate Reactivity 5 β-Linked C-Acyl and Homoacyl Glycoside Synthesis 6 Elaboration to other Products 7 Conclusion 
    more » « less
  4. Summary The chemical arms race between plants and insects is foundational to the generation and maintenance of biological diversity. We asked how the evolution of a novel defensive compound in an already well‐defended plant lineage impacts interactions with diverse herbivores.Erysimum cheiranthoides(Brassicaceae), which produces both ancestral glucosinolates and novel cardiac glycosides, served as a model.We analyzed gene expression to identify cardiac glycoside biosynthetic enzymes inE. cheiranthoidesand characterized these enzymes via heterologous expression and CRISPR/Cas9 knockout. UsingE. cheiranthoidescardiac glycoside‐deficient lines, we conducted insect experiments in both the laboratory and field.EcCYP87A126 initiates cardiac glycoside biosynthesis via sterol side‐chain cleavage, andEcCYP716A418 has a role in cardiac glycoside hydroxylation. In EcCYP87A126knockout lines, cardiac glycoside production was eliminated. Laboratory experiments with these lines revealed that cardiac glycosides were highly effective defenses against two species of glucosinolate‐tolerant specialist herbivores, but did not protect against all crucifer‐feeding specialist herbivores in the field. Cardiac glycosides had lesser to no effect on two broad generalist herbivores.These results begin elucidation of theE. cheiranthoidescardiac glycoside biosynthetic pathway and demonstratein vivothat cardiac glycoside production allowsErysimumto escape from some, but not all, specialist herbivores. 
    more » « less
  5. null (Ed.)
    Native chlorophylls and bacteriochlorophylls share a common trans-substituted pyrroline ring D (17-propionic acid, 18-methyl), whereas diversity occurs in ring A particularly at the 3-position. Two dihydrodipyrrins equipped with native-like D-ring substituents and tailorable A-ring substituents have been synthesized. The synthesis relies on a Schreiber-modified Nicholas reaction to construct the stereochemically defined precursor to ring D, a dialkyl-substituted pent-4-ynoic acid. The carboxylic acid group of the intact propionic acid proved unworkable, whereupon protected propionate (−CO2tBu) and several latent propyl ethers were examined. The tert-butyldiphenylsilyl-protected propanol substituent proved satisfactory for reaction of the chiral N-acylated oxazolidinone, affording (2S,3S)-2-(3-((tert-butyldiphenylsilyl)-oxy)propyl)-3-methylpent-4-ynoic acid in ∼30% yield over 8 steps. Two variants for ring A, 2-tert-butoxycarbonyl-3-Br/H-5-iodo-4- methylpyrrole, were prepared via the Barton−Zard route. Dihydrodipyrrin formation from the pyrrole and pentynoic acid entailed Jacobi Pd-mediated lactone formation, Petasis methenylation, and Paal−Knorr-type pyrroline formation. The two AD- dihydrodipyrrins bear the D-ring methyl and protected propanol groups with a stereochemical configuration identical to that of native (bacterio)chlorophylls, and a bromine or no substitution in ring A corresponding to the 3-position of (bacterio)chlorophylls. The analogous β-position of a lactone−pyrrole intermediate on the path to the dihydrodipyrrin also was successfully brominated, opening opportunities for late-stage diversification in the synthesis of (bacterio)chlorophylls. 
    more » « less