skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Cardiac glycosides protect wormseed wallflower ( Erysimum cheiranthoides ) against some, but not all, glucosinolate‐adapted herbivores
Summary The chemical arms race between plants and insects is foundational to the generation and maintenance of biological diversity. We asked how the evolution of a novel defensive compound in an already well‐defended plant lineage impacts interactions with diverse herbivores.Erysimum cheiranthoides(Brassicaceae), which produces both ancestral glucosinolates and novel cardiac glycosides, served as a model.We analyzed gene expression to identify cardiac glycoside biosynthetic enzymes inE. cheiranthoidesand characterized these enzymes via heterologous expression and CRISPR/Cas9 knockout. UsingE. cheiranthoidescardiac glycoside‐deficient lines, we conducted insect experiments in both the laboratory and field.EcCYP87A126 initiates cardiac glycoside biosynthesis via sterol side‐chain cleavage, andEcCYP716A418 has a role in cardiac glycoside hydroxylation. In EcCYP87A126knockout lines, cardiac glycoside production was eliminated. Laboratory experiments with these lines revealed that cardiac glycosides were highly effective defenses against two species of glucosinolate‐tolerant specialist herbivores, but did not protect against all crucifer‐feeding specialist herbivores in the field. Cardiac glycosides had lesser to no effect on two broad generalist herbivores.These results begin elucidation of theE. cheiranthoidescardiac glycoside biosynthetic pathway and demonstratein vivothat cardiac glycoside production allowsErysimumto escape from some, but not all, specialist herbivores.  more » « less
Award ID(s):
2209762
PAR ID:
10487034
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
New Phytologist
Volume:
242
Issue:
6
ISSN:
0028-646X
Format(s):
Medium: X Size: p. 2719-2733
Size(s):
p. 2719-2733
Sponsoring Org:
National Science Foundation
More Like this
  1. Summary In plants, the biosynthetic pathways of some specialized metabolites are partitioned into specialized or rare cell types, as exemplified by the monoterpenoid indole alkaloid (MIA) pathway ofCatharanthus roseus(Madagascar Periwinkle), the source of the anticancer compounds vinblastine and vincristine. In the leaf, theC. roseusMIA biosynthetic pathway is partitioned into three cell types with the final known steps of the pathway expressed in the rare cell type termed idioblast. How cell‐type specificity of MIA biosynthesis is achieved is poorly understood.We generated single‐cell multi‐omics data fromC. roseusleaves. Integrating gene expression and chromatin accessibility profiles across single cells, as well as transcription factor (TF)‐binding site profiles, we constructed a cell‐type‐aware gene regulatory network for MIA biosynthesis.We showcased cell‐type‐specific TFs as well as cell‐type‐specificcis‐regulatory elements. Using motif enrichment analysis, co‐expression across cell types, and functional validation approaches, we discovered a novel idioblast‐specific TF (Idioblast MYB1,CrIDM1) that activates expression of late‐stage MIA biosynthetic genes in the idioblast.These analyses not only led to the discovery of the first documented cell‐type‐specific TF that regulates the expression of two idioblast‐specific biosynthetic genes within an idioblast metabolic regulon but also provides insights into cell‐type‐specific metabolic regulation. 
    more » « less
  2. Summary Accumulation of triacylglycerols (TAGs) is crucial during various stages of plant development. InArabidopsis, two enzymes share overlapping functions to produce TAGs, namely acyl‐CoA:diacylglycerol acyltransferase 1 (DGAT1) and phospholipid:diacylglycerol acyltransferase 1 (PDAT1). Loss of function of both genes in adgat1‐1/pdat1‐2double mutant is gametophyte lethal. However, the key regulatory elements controlling tissue‐specific expression of either gene has not yet been identified.We transformed adgat1‐1/dgat1‐1//PDAT1/pdat1‐2parent with transgenic constructs containing theArabidopsis DGAT1promoter fused to theAtDGAT1open reading frame either with or without the first intron.Triple homozygous plants were obtained, however, in the absence of theDGAT1first intron anthers fail to fill with pollen, seed yield isc. 10% of wild‐type, seed oil content remains reduced (similar todgat1‐1/dgat1‐1), and non‐Mendelian segregation of thePDAT1/pdat1‐2locus occurs. Whereas plants expressing theAtDGAT1pro:AtDGAT1transgene containing the first intron mostly recover phenotypes to wild‐type.This study establishes that a combination of the promoter and first intron ofAtDGAT1provides the proper context for temporal and tissue‐specific expression ofAtDGAT1in pollen. Furthermore, we discuss possible mechanisms of intron mediated regulation and how regulatory elements can be used as genetic tools to functionally replace TAG biosynthetic enzymes inArabidopsis. 
    more » « less
  3. null (Ed.)
    Tolyporphins A–R constitute fundamentally distinct members of the tetrapyrrole pigments of life family. The 18 members present diversity at multiple levels including the chromophore (dioxobacteriochlorin, oxochlorin, porphyrin); composition of the pyrroline substituents (hydroxy, acetoxy, or one of four C -glycosides); and stereochemical configuration of the pyrroline substituents. Eleven of the 18 tolyporphins contain at least one C -glycoside; each C -glycoside has a β, d configuration and lacks a 6′-hydroxy group: 3′,6′-dideoxygalactose (common name abequose), 2′- O -acetyl-3′,6′-dideoxygalactose (2′- O -acetylabequose), 6′-deoxygalactose ( d -fucose), or 6′-deoxygulose (antiarose). Rare are such glycosides outside of tolyporphins: (2′- O -acetyl)abequose is reported only in the glycan polymer attached to the cell wall of two strains of Gram-negative bacteria, and antiarose is reported in one bacterial natural product and ∼50 plant cardiac glycosides. Eight of the 18 tolyporphins are bis( C -glycosides), an exceptionally uncommon motif in natural products. The biosynthetic pathways to the family of tolyporphins remain unknown. Regardless of such diversity, each tolyporphin member shares a common pattern of perimeter methyl substituents that coheres with derivation from uroporphyrinogen III, the universal precursor in the established pathway to native tetrapyrroles. Here, transformations required to convert uroporphyrinogen III to all 18 tolyporphins are considered in the context of plausible biosynthetic pathways. Heme d 1 , perhaps the closest relative (yet still a distant cousin) of tolyporphins, and for which key biosynthetic transformations remain undeciphered, provides a point of reference. Taken together, the work provides the foundation for bioinformatic searching for enzymes associated with the biosynthesis and diversification of tolyporphins. 
    more » « less
  4. Summary Vascular bundles transport water and photosynthate to all organs, and increased bundle number contributes to crop lodging resistance. However, the regulation of vascular bundle formation is poorly understood in the Arabidopsis stem.We report a novel semi‐dominant mutant with high vascular activity,hva‐d, showing increased vascular bundle number and enhanced cambium proliferation in the stem. The activation of a C2H2 zinc finger transcription factor,AT5G27880/HVA, is responsible for thehva‐dphenotype. Genetic, biochemical, and fluorescent microscopic analyses were used to dissect the functions of HVA.HVA functions as a repressor and interacts with TOPLESS via the conserved Ethylene‐responsive element binding factor‐associated Amphiphilic Repression motif. In contrast to the HVA activation line, knockout ofHVAfunction with a CRISPR‐Cas9 approach or expression of HVA fused with an activation domain VP16 (HVA‐VP16) resulted in fewer vascular bundles. Further, HVA directly regulates the expression of the auxin transport efflux facilitatorPIN1, as a result affecting auxin accumulation. Genetics analysis demonstrated that PIN1 is epistatic to HVA in controlling bundle number.This research identifies HVA as a positive regulator of vascular initiation through negatively modulating auxin transport and sheds new light on the mechanism of bundle formation in the stem. 
    more » « less
  5. Summary The mint family (Lamiaceae) is well documented as a rich source of terpene natural products. More than 200 diterpene skeletons have been reported from mints, but biosynthetic pathways are known for just a few of these.We crossreferenced chemotaxonomic data with publicly available transcriptomes to select common selfheal (Prunella vulgaris) and its highly unusual vulgarisin diterpenoids as a case study for exploring the origins of diterpene skeletal diversity in Lamiaceae. Four terpene synthases (TPS) from the TPS‐a subfamily, including two localised to the plastid, were cloned and functionally characterised. Previous examples of TPS‐a enzymes from Lamiaceae were cytosolic and reported to act on the 15‐carbon farnesyl diphosphate. Plastidial TPS‐a enzymes using the 20‐carbon geranylgeranyl diphosphate are known from other plant families, having apparently arisen independently in each family.All four new enzymes were found to be active on multiple prenyl‐diphosphate substrates with different chain lengths and stereochemistries. One of the new enzymes catalysed the cyclisation of geranylgeranyl diphosphate into 11‐hydroxy vulgarisane, the likely biosynthetic precursor of the vulgarisins.We uncovered the pathway to a rare diterpene skeleton. Our results support an emerging paradigm of substrate and compartment switching as important aspects of TPS evolution and diversification. 
    more » « less