skip to main content


Title: Development and evaluation of pneumatic actuators for pediatric upper extremity rehabilitation devices
Textile pneumatic actuators were developed to provide full assistance to lift the arm of a model of an 11-year-old male beyond 120 degrees of shoulder abduction. Two fabrics and a variety of sealing techniques, methods of attachment, and actuator shapes were comparatively evaluated using textile and functional tests. The results identified that both fabrics and one of the three sealing techniques were effective for creating air-tight, functional actuators. Actuators were more effective when the bands attaching them were closer to the axilla. Rectangular and wing-shaped actuators, both lifting the model of an 11-year-old male’s arm above 120 degrees of abduction, were more effective than Y-shaped actuators. Multiple designs and materials may be acceptable for building textile pneumatic actuators to lift the full weight of a child’s arm. Compared to traditional hard robots, soft assistive robots offer key potential benefits related to comfort, aesthetics, weight, bulk, and cost.  more » « less
Award ID(s):
1722596
NSF-PAR ID:
10285965
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
The Journal of The Textile Institute
ISSN:
0040-5000
Page Range / eLocation ID:
1 to 8
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Textile based pneumatic actuators have recently seen increased development for use in wearable applications thanks to their high strength to weight ratio and range of achievable actuation modalities. However, the design of these textile-based actuators is typically an iterative process due to the complexity of predicting the soft and compliant behavior of the textiles. In this work we investigate the actuation mechanics of a range of physical prototypes of unfolding textile-based actuators to understand and develop an intuition for how the geometric parameters of the actuator affect the moment it generates, enabling more deterministic designs in the future. Under benchtop conditions the actuators were characterized at a range of actuator angles and pressures (0 – 136 kPa), and three distinct performance regimes were observed, which we define as Shearing, Creasing, and Flattening. During Flattening, the effects of both the length and radius of the actuator dominate with maximum moments in excess of 80 Nm being generated, while during Creasing the radius dominates with generated moments scaling with the cube of the radius. Low stiffness spring like behavior is observed in the Shearing regime, which occurs as the actuator approaches its unfolded angle. A piecewise analytical model was also developed and compared to the experimental results within each regime. Finally, a prototype actuator was also integrated into a shoulder assisting wearable robot, and on-body characterization of this robot was performed on five healthy individuals to observe the behavior of the actuators in a wearable application. Results from this characterization highlight that these actuators can generate useful on-body moments (10.74 Nm at 90° actuator angle) but that there are significant reductions compared to bench-top performance, in particular when mostly folded and at higher pressures. 
    more » « less
  2. In 2020, cardiovascular diseases resulted in 25% of unnatural deaths in the United States. Treatment with long-term administration of medication can adversely affect other organs, and surgeries such as coronary artery grafts are risky. Meanwhile, sequential compression therapy (SCT) offers a low-risk alternative, but is currently expensive and unwieldy, and often requires the patient to be immobilized during administration. Here, we present a low-cost wearable device to administer SCT, constructed using a stacked lamination fabrication approach. Expanding on concepts from the field of soft robotics, textile sheets are thermally bonded to form pneumatic actuators, which are controlled by an inconspicuous and tetherless electronic onboard supply of pressurized air. Our open-source, low-profile, and lightweight (140 g) device costs $62, less than one-third the cost the least expensive alternative and one-half the weight of lightest alternative approved by the US Food and Drug Administration (FDA), presenting the opportunity to more effectively provide SCT to socioeconomically disadvantaged individuals. Furthermore, our textile-stacking method, inspired by conventional fabrication methods from the apparel industry, along with the lightweight fabrics used, allows the device to be worn more comfortably than other SCT devices. By reducing physical and financial encumbrances, the device presented in this work may better enable patients to treat cardiovascular diseases and aid in recovery from cardiac surgeries. 
    more » « less
  3. Textiles hold great promise as a soft yet durable material for building comfortable robotic wearables and assistive devices at low cost. Nevertheless, the development of smart wearables composed entirely of textiles has been hindered by the lack of a viable sheet-based logic architecture that can be implemented using conventional fabric materials and textile manufacturing processes. Here, we develop a fully textile platform for embedding pneumatic digital logic in wearable devices. Our logic-enabled textiles support combinational and sequential logic functions, onboard memory storage, user interaction, and direct interfacing with pneumatic actuators. In addition, they are designed to be lightweight, easily integrable into regular clothing, made using scalable fabrication techniques, and durable enough to withstand everyday use. We demonstrate a textile computer capable of input-driven digital logic for controlling untethered wearable robots that assist users with functional limitations. Our logic platform will facilitate the emergence of future wearables powered by embedded fluidic logic that fully leverage the innate advantages of their textile construction. 
    more » « less
  4. null (Ed.)
    Upper limb mobility impairments affect individuals at all life stages. Exoskeletons can assist in rehabilitation as well as performing Activities of Daily Living (ADL). Most commercial assistive devices still rely on rigid robotics with constrained biomechanical degrees of freedom that may even increase user exertion. Therefore, this paper discusses the iterative design and development of a novel hybrid pneumatic actuation and Shape Memory Alloy (SMA) based wearable soft exoskeleton to assist in shoulder abduction and horizontal flexion/extension movements, with integrated soft strain sensing to track shoulder joint motion. The garment development was done in two stages which involved creating (1) SMA actuators integrated with soft sensing, and (2) integrating pneumatic actuation. The final soft exoskeleton design was developed based on the insights gained from two prior prototypes in terms of wearability, usability, comfort, and functional specifications (i.e., placement and number) of the sensors and actuators. The final exoskeleton is a modular, multilayer garment which uses a hybrid and customizable actuation strategy (SMA and inflatable pneumatic bladder). 
    more » « less
  5. Tactile sensing is essential for robots to perceive and react to the environment. However, it remains a challenge to make large-scale and flexible tactile skins on robots. Industrial machine knitting provides solutions to manufacture customiz-able fabrics. Along with functional yarns, it can produce highly customizable circuits that can be made into tactile skins for robots. In this work, we present RobotSweater, a machine-knitted pressure-sensitive tactile skin that can be easily applied on robots. We design and fabricate a parameterized multi-layer tactile skin using off-the-shelf yarns, and characterize our sensor on both a flat testbed and a curved surface to show its robust contact detection, multi-contact localization, and pressure sensing capabilities. The sensor is fabricated using a well-established textile manufacturing process with a programmable industrial knitting machine, which makes it highly customizable and low-cost. The textile nature of the sensor also makes it easily fit curved surfaces of different robots and have a friendly appearance. Using our tactile skins, we conduct closed-loop control with tactile feedback for two applications: (1) human lead-through control of a robot arm, and (2) human-robot interaction with a mobile robot. 
    more » « less