This paper presents a layering approach for the manufacturing of pneumatic soft actuators as a coalesced solution to the diverse array of existing fabrication methods. While most research groups have developed their own (often tedious) fabrication strategies for soft actuators, these methods are usually based on available equipment and project-specific design requirements, making them impractical for use in other laboratories. In contrast, the layered substrate approach enables repeatable production of highly-capable pneumatic actuators that can be easily customized to suit a variety of applications. Here we propose layering fiber-reinforced silicone on both sides of a thin pneumatic chamber to directionally constrain expansion. Similar in concept to the Venus flytrap, pressurization of the chamber causes the module to deform and expand where unrestrained. Strategic orientation and patterning of the fiber reinforcement layers results in multiple unique shear and bending capabilities upon pressurization. Combinations of multiple reinforced pneumatic units in series or parallel could match the capabilities of most soft pneumatic actuators, while requiring only simple, universal fabrication methods that may be replicated by other research groups.
more »
« less
This content will become publicly available on July 16, 2025
Experimental investigation on enhancement in pure axial deformation of soft pneumatic actuator (SPA) with cap ring reinforcement
Abstract Bio-inspired soft-robots are nowadays found their place in many applications due to its flexibility, compliance and adaptivity to unstructured environment. The main intricate part of such bio-inspired soft robots are soft pneumatic actuators (SPA) which replicate or mimic the limbs and muscles. The soft actuators are pneumatically actuated and provide bending motion in most cases. However, many engineering and medical applications need axially expanding soft pneumatic actuators to deal with delicate objects. Various studies have put forward designs for SPA with axial deformation, but the majority of them have limited axial deformation, constraining motion and less overall efficacy which limit the scope of utilization. The common practice to enhance the axial deformation of SPA is by incorporating directionally customized reinforcement using fibres or by other means like yarns, fabrics, etc These types of reinforcements are generally embedded to SPA during fabrication and may not have capability for any correction or modification later on hence lack the customization. This paper presents a novel method of radial reinforcement for the enhancement of axial deformation of SPAs with provision of customization. The present study aims to enhance and/or customize the axial deformation of SPA by incorporating external and detachable reinforcement in the form of annulus shaped cap ring. The investigation encompasses the design and attachment of four distinct cap ring geometries to SPA at different locations. Experimental results affirm that cap ring reinforcement bolster the radial stiffness, curbing lateral deformation while permitting axial deformation of soft pneumatic actuators. Out of 64 distinct configurations, the one with full reinforcement, featuring four cap rings of maximum size, yields a remarkable 169% increase in pure axial deformation compared to unreinforced cases. It is also observed that by varying the number and placement locations of cap rings the pure axial deformation can be customized. This novel insight not only propels soft pneumatic actuation technology but also heralds prospects for highly agile and versatile robotic systems which can be used in medical, prosthetics, pharmaceutical and other industries.
more »
« less
- Award ID(s):
- 2205205
- PAR ID:
- 10525581
- Publisher / Repository:
- IOP
- Date Published:
- Journal Name:
- Engineering Research Express
- Volume:
- 6
- Issue:
- 3
- ISSN:
- 2631-8695
- Page Range / eLocation ID:
- 035512
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Mattoli, Virgilio (Ed.)Pneumatically-actuated soft robots have advantages over traditional rigid robots in many applications. In particular, their flexible bodies and gentle air-powered movements make them more suitable for use around humans and other objects that could be injured or damaged by traditional robots. However, existing systems for controlling soft robots currently require dedicated electromechanical hardware (usually solenoid valves) to maintain the actuation state (expanded or contracted) of each independent actuator. When combined with power, computation, and sensing components, this control hardware adds considerable cost, size, and power demands to the robot, thereby limiting the feasibility of soft robots in many important application areas. In this work, we introduce a pneumatic memory that uses air (not electricity) to set and maintain the states of large numbers of soft robotic actuators without dedicated electromechanical hardware. These pneumatic logic circuits use normally-closed microfluidic valves as transistor-like elements; this enables our circuits to support more complex computational functions than those built from normally-open valves. We demonstrate an eight-bit nonvolatile random-access pneumatic memory (RAM) that can maintain the states of multiple actuators, control both individual actuators and multiple actuators simultaneously using a pneumatic version of time division multiplexing (TDM), and set actuators to any intermediate position using a pneumatic version of analog-to-digital conversion. We perform proof-of-concept experimental testing of our pneumatic RAM by using it to control soft robotic hands playing individual notes, chords, and songs on a piano keyboard. By dramatically reducing the amount of hardware required to control multiple independent actuators in pneumatic soft robots, our pneumatic RAM can accelerate the spread of soft robotic technologies to a wide range of important application areas.more » « less
-
A minimal number of rigid constraints makes soft robots versatile, but many of these robots use soft pneumatic actuators (SPAs) designed to inflate through a single trajectory. In an unloaded actuator, this trajectory is dictated by the arrangement of in-extensible and elastic materials. External strain limiters can be added post-fabrication to SPAs, but these are passive devices. In this paper, we offer design and control techniques for an electrically active strain limiter that is easily adhered to existing SPAs to provide signal-controlled force output. These sheathed electroadhesive (EA) clutches apply antagonistic forces through the constitutive properties of their silicone sheathing and through the variable friction of the clutch itself. We are able to design the sheathing to passively support loads or minimize passive stiffness. We control clutch forces via an augmented pulse-width-modulation (PWM) of the high voltage square-wave input. We perform an initial, empirical characterization on the system with tensile material testing. The clutch system resists motion with sustained forces ranging from 0.5N to 22N. We then demonstrate its ability to apply predictable nonconservative work in a dynamic catching task, where it can limit catching height from 15cm to 1cm. Finally, we attach it to an inverse pneumatic artificial muscle (IPAM) to show that variable strain limitation can control position of the SPA endpoint.more » « less
-
Abstract While soft robots enjoy the benefits of high adaptability and safety, their inherent flexibility makes them suffer from low load-carrying capacity and motion precision, which limits their applications to a broader range of fields. To address this problem, we propose a novel compliant hinge joint with a stiff backbone for load-carrying coupled with soft pneumatic networks (PneuNets) bending actuators. We derive a pseudo-rigid-body model of the joint design and validate it through experiments and simulations. The results show that the joint can achieve a large range of bending angles. The off-axis stiffness is from 16.74 to 627.63 times the in-axis stiffness. This design can carry a heavy load off-axis while maintaining the in-axis flexibility. This work lays out the foundation for designing high-performance soft robots by combining various flexure mechanisms and pneumatic bending actuators.more » « less
-
Soft robots often draw inspiration from nature to navigate different environments. Although the inching motion and crawling motion of caterpillars have been widely studied in the design of soft robots, the steering motion with local bending control remains challenging. To address this challenge, we explore modular origami units which constitute building blocks for mimicking the segmented caterpillar body. Based on this concept, we report a modular soft Kresling origami crawling robot enabled by electrothermal actuation. A compact and lightweight Kresling structure is designed, fabricated, and characterized with integrated thermal bimorph actuators consisting of liquid crystal elastomer and polyimide layers. With the modular design and reprogrammable actuation, a multiunit caterpillar-inspired soft robot composed of both active units and passive units is developed for bidirectional locomotion and steering locomotion with precise curvature control. We demonstrate the modular design of the Kresling origami robot with an active robotic module picking up cargo and assembling with another robotic module to achieve a steering function. The concept of modular soft robots can provide insight into future soft robots that can grow, repair, and enhance functionality.more » « less